Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91316258
dihedral_multi_harmonic.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Nov 9, 22:45
Size
9 KB
Mime Type
text/x-c
Expires
Mon, Nov 11, 22:45 (2 d)
Engine
blob
Format
Raw Data
Handle
22241741
Attached To
rLAMMPS lammps
dihedral_multi_harmonic.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Mathias Puetz (SNL) and friends
------------------------------------------------------------------------- */
#include <math.h>
#include <stdlib.h>
#include "dihedral_multi_harmonic.h"
#include "atom.h"
#include "neighbor.h"
#include "domain.h"
#include "comm.h"
#include "force.h"
#include "update.h"
#include "memory.h"
#include "error.h"
using namespace LAMMPS_NS;
#define TOLERANCE 0.05
#define SMALL 0.001
/* ---------------------------------------------------------------------- */
DihedralMultiHarmonic::DihedralMultiHarmonic(LAMMPS *lmp) : Dihedral(lmp) {}
/* ---------------------------------------------------------------------- */
DihedralMultiHarmonic::~DihedralMultiHarmonic()
{
if (allocated) {
memory->destroy(setflag);
memory->destroy(a1);
memory->destroy(a2);
memory->destroy(a3);
memory->destroy(a4);
memory->destroy(a5);
}
}
/* ---------------------------------------------------------------------- */
void DihedralMultiHarmonic::compute(int eflag, int vflag)
{
int i1,i2,i3,i4,n,type;
double vb1x,vb1y,vb1z,vb2x,vb2y,vb2z,vb3x,vb3y,vb3z,vb2xm,vb2ym,vb2zm;
double edihedral,f1[3],f2[3],f3[3],f4[3];
double sb1,sb2,sb3,rb1,rb3,c0,b1mag2,b1mag,b2mag2;
double b2mag,b3mag2,b3mag,ctmp,r12c1,c1mag,r12c2;
double c2mag,sc1,sc2,s1,s12,c,p,pd,a,a11,a22;
double a33,a12,a13,a23,sx2,sy2,sz2;
double s2,sin2;
edihedral = 0.0;
if (eflag || vflag) ev_setup(eflag,vflag);
else evflag = 0;
double **x = atom->x;
double **f = atom->f;
int **dihedrallist = neighbor->dihedrallist;
int ndihedrallist = neighbor->ndihedrallist;
int nlocal = atom->nlocal;
int newton_bond = force->newton_bond;
for (n = 0; n < ndihedrallist; n++) {
i1 = dihedrallist[n][0];
i2 = dihedrallist[n][1];
i3 = dihedrallist[n][2];
i4 = dihedrallist[n][3];
type = dihedrallist[n][4];
// 1st bond
vb1x = x[i1][0] - x[i2][0];
vb1y = x[i1][1] - x[i2][1];
vb1z = x[i1][2] - x[i2][2];
// 2nd bond
vb2x = x[i3][0] - x[i2][0];
vb2y = x[i3][1] - x[i2][1];
vb2z = x[i3][2] - x[i2][2];
vb2xm = -vb2x;
vb2ym = -vb2y;
vb2zm = -vb2z;
// 3rd bond
vb3x = x[i4][0] - x[i3][0];
vb3y = x[i4][1] - x[i3][1];
vb3z = x[i4][2] - x[i3][2];
// c0 calculation
sb1 = 1.0 / (vb1x*vb1x + vb1y*vb1y + vb1z*vb1z);
sb2 = 1.0 / (vb2x*vb2x + vb2y*vb2y + vb2z*vb2z);
sb3 = 1.0 / (vb3x*vb3x + vb3y*vb3y + vb3z*vb3z);
rb1 = sqrt(sb1);
rb3 = sqrt(sb3);
c0 = (vb1x*vb3x + vb1y*vb3y + vb1z*vb3z) * rb1*rb3;
// 1st and 2nd angle
b1mag2 = vb1x*vb1x + vb1y*vb1y + vb1z*vb1z;
b1mag = sqrt(b1mag2);
b2mag2 = vb2x*vb2x + vb2y*vb2y + vb2z*vb2z;
b2mag = sqrt(b2mag2);
b3mag2 = vb3x*vb3x + vb3y*vb3y + vb3z*vb3z;
b3mag = sqrt(b3mag2);
ctmp = vb1x*vb2x + vb1y*vb2y + vb1z*vb2z;
r12c1 = 1.0 / (b1mag*b2mag);
c1mag = ctmp * r12c1;
ctmp = vb2xm*vb3x + vb2ym*vb3y + vb2zm*vb3z;
r12c2 = 1.0 / (b2mag*b3mag);
c2mag = ctmp * r12c2;
// cos and sin of 2 angles and final c
sin2 = MAX(1.0 - c1mag*c1mag,0.0);
sc1 = sqrt(sin2);
if (sc1 < SMALL) sc1 = SMALL;
sc1 = 1.0/sc1;
sin2 = MAX(1.0 - c2mag*c2mag,0.0);
sc2 = sqrt(sin2);
if (sc2 < SMALL) sc2 = SMALL;
sc2 = 1.0/sc2;
s1 = sc1 * sc1;
s2 = sc2 * sc2;
s12 = sc1 * sc2;
c = (c0 + c1mag*c2mag) * s12;
// error check
if (c > 1.0 + TOLERANCE || c < (-1.0 - TOLERANCE)) {
int me;
MPI_Comm_rank(world,&me);
if (screen) {
char str[128];
sprintf(str,"Dihedral problem: %d " BIGINT_FORMAT " "
TAGINT_FORMAT " " TAGINT_FORMAT " "
TAGINT_FORMAT " " TAGINT_FORMAT,
me,update->ntimestep,
atom->tag[i1],atom->tag[i2],atom->tag[i3],atom->tag[i4]);
error->warning(FLERR,str,0);
fprintf(screen," 1st atom: %d %g %g %g\n",
me,x[i1][0],x[i1][1],x[i1][2]);
fprintf(screen," 2nd atom: %d %g %g %g\n",
me,x[i2][0],x[i2][1],x[i2][2]);
fprintf(screen," 3rd atom: %d %g %g %g\n",
me,x[i3][0],x[i3][1],x[i3][2]);
fprintf(screen," 4th atom: %d %g %g %g\n",
me,x[i4][0],x[i4][1],x[i4][2]);
}
}
if (c > 1.0) c = 1.0;
if (c < -1.0) c = -1.0;
// force & energy
// p = sum (i=1,5) a_i * c**(i-1)
// pd = dp/dc
p = a1[type] + c*(a2[type] + c*(a3[type] + c*(a4[type] + c*a5[type])));
pd = a2[type] + c*(2.0*a3[type] + c*(3.0*a4[type] + c*4.0*a5[type]));
if (eflag) edihedral = p;
a = pd;
c = c * a;
s12 = s12 * a;
a11 = c*sb1*s1;
a22 = -sb2 * (2.0*c0*s12 - c*(s1+s2));
a33 = c*sb3*s2;
a12 = -r12c1*(c1mag*c*s1 + c2mag*s12);
a13 = -rb1*rb3*s12;
a23 = r12c2*(c2mag*c*s2 + c1mag*s12);
sx2 = a12*vb1x + a22*vb2x + a23*vb3x;
sy2 = a12*vb1y + a22*vb2y + a23*vb3y;
sz2 = a12*vb1z + a22*vb2z + a23*vb3z;
f1[0] = a11*vb1x + a12*vb2x + a13*vb3x;
f1[1] = a11*vb1y + a12*vb2y + a13*vb3y;
f1[2] = a11*vb1z + a12*vb2z + a13*vb3z;
f2[0] = -sx2 - f1[0];
f2[1] = -sy2 - f1[1];
f2[2] = -sz2 - f1[2];
f4[0] = a13*vb1x + a23*vb2x + a33*vb3x;
f4[1] = a13*vb1y + a23*vb2y + a33*vb3y;
f4[2] = a13*vb1z + a23*vb2z + a33*vb3z;
f3[0] = sx2 - f4[0];
f3[1] = sy2 - f4[1];
f3[2] = sz2 - f4[2];
// apply force to each of 4 atoms
if (newton_bond || i1 < nlocal) {
f[i1][0] += f1[0];
f[i1][1] += f1[1];
f[i1][2] += f1[2];
}
if (newton_bond || i2 < nlocal) {
f[i2][0] += f2[0];
f[i2][1] += f2[1];
f[i2][2] += f2[2];
}
if (newton_bond || i3 < nlocal) {
f[i3][0] += f3[0];
f[i3][1] += f3[1];
f[i3][2] += f3[2];
}
if (newton_bond || i4 < nlocal) {
f[i4][0] += f4[0];
f[i4][1] += f4[1];
f[i4][2] += f4[2];
}
if (evflag)
ev_tally(i1,i2,i3,i4,nlocal,newton_bond,edihedral,f1,f3,f4,
vb1x,vb1y,vb1z,vb2x,vb2y,vb2z,vb3x,vb3y,vb3z);
}
}
/* ---------------------------------------------------------------------- */
void DihedralMultiHarmonic::allocate()
{
allocated = 1;
int n = atom->ndihedraltypes;
memory->create(a1,n+1,"dihedral:a1");
memory->create(a2,n+1,"dihedral:a2");
memory->create(a3,n+1,"dihedral:a3");
memory->create(a4,n+1,"dihedral:a4");
memory->create(a5,n+1,"dihedral:a5");
memory->create(setflag,n+1,"dihedral:setflag");
for (int i = 1; i <= n; i++) setflag[i] = 0;
}
/* ----------------------------------------------------------------------
set coeffs for one type
------------------------------------------------------------------------- */
void DihedralMultiHarmonic::coeff(int narg, char **arg)
{
if (narg != 6) error->all(FLERR,"Incorrect args for dihedral coefficients");
if (!allocated) allocate();
int ilo,ihi;
force->bounds(arg[0],atom->ndihedraltypes,ilo,ihi);
double a1_one = force->numeric(FLERR,arg[1]);
double a2_one = force->numeric(FLERR,arg[2]);
double a3_one = force->numeric(FLERR,arg[3]);
double a4_one = force->numeric(FLERR,arg[4]);
double a5_one = force->numeric(FLERR,arg[5]);
int count = 0;
for (int i = ilo; i <= ihi; i++) {
a1[i] = a1_one;
a2[i] = a2_one;
a3[i] = a3_one;
a4[i] = a4_one;
a5[i] = a5_one;
setflag[i] = 1;
count++;
}
if (count == 0) error->all(FLERR,"Incorrect args for dihedral coefficients");
}
/* ----------------------------------------------------------------------
proc 0 writes out coeffs to restart file
------------------------------------------------------------------------- */
void DihedralMultiHarmonic::write_restart(FILE *fp)
{
fwrite(&a1[1],sizeof(double),atom->ndihedraltypes,fp);
fwrite(&a2[1],sizeof(double),atom->ndihedraltypes,fp);
fwrite(&a3[1],sizeof(double),atom->ndihedraltypes,fp);
fwrite(&a4[1],sizeof(double),atom->ndihedraltypes,fp);
fwrite(&a5[1],sizeof(double),atom->ndihedraltypes,fp);
}
/* ----------------------------------------------------------------------
proc 0 reads coeffs from restart file, bcasts them
------------------------------------------------------------------------- */
void DihedralMultiHarmonic::read_restart(FILE *fp)
{
allocate();
if (comm->me == 0) {
fread(&a1[1],sizeof(double),atom->ndihedraltypes,fp);
fread(&a2[1],sizeof(double),atom->ndihedraltypes,fp);
fread(&a3[1],sizeof(double),atom->ndihedraltypes,fp);
fread(&a4[1],sizeof(double),atom->ndihedraltypes,fp);
fread(&a5[1],sizeof(double),atom->ndihedraltypes,fp);
}
MPI_Bcast(&a1[1],atom->ndihedraltypes,MPI_DOUBLE,0,world);
MPI_Bcast(&a2[1],atom->ndihedraltypes,MPI_DOUBLE,0,world);
MPI_Bcast(&a3[1],atom->ndihedraltypes,MPI_DOUBLE,0,world);
MPI_Bcast(&a4[1],atom->ndihedraltypes,MPI_DOUBLE,0,world);
MPI_Bcast(&a5[1],atom->ndihedraltypes,MPI_DOUBLE,0,world);
for (int i = 1; i <= atom->ndihedraltypes; i++) setflag[i] = 1;
}
Event Timeline
Log In to Comment