Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91399708
pair_peri_pmb.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sun, Nov 10, 18:03
Size
14 KB
Mime Type
text/x-c
Expires
Tue, Nov 12, 18:03 (2 d)
Engine
blob
Format
Raw Data
Handle
22239925
Attached To
rLAMMPS lammps
pair_peri_pmb.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Mike Parks (SNL)
------------------------------------------------------------------------- */
#include <math.h>
#include <float.h>
#include <stdlib.h>
#include <string.h>
#include "pair_peri_pmb.h"
#include "atom.h"
#include "domain.h"
#include "lattice.h"
#include "force.h"
#include "update.h"
#include "modify.h"
#include "fix.h"
#include "fix_peri_neigh.h"
#include "comm.h"
#include "neighbor.h"
#include "neigh_list.h"
#include "neigh_request.h"
#include "memory.h"
#include "error.h"
using
namespace
LAMMPS_NS
;
/* ---------------------------------------------------------------------- */
PairPeriPMB
::
PairPeriPMB
(
LAMMPS
*
lmp
)
:
Pair
(
lmp
)
{
for
(
int
i
=
0
;
i
<
6
;
i
++
)
virial
[
i
]
=
0.0
;
no_virial_fdotr_compute
=
1
;
ifix_peri
=
-
1
;
nmax
=
0
;
s0_new
=
NULL
;
kspring
=
NULL
;
s00
=
NULL
;
alpha
=
NULL
;
cut
=
NULL
;
}
/* ---------------------------------------------------------------------- */
PairPeriPMB
::~
PairPeriPMB
()
{
if
(
ifix_peri
>=
0
)
modify
->
delete_fix
(
"PERI_NEIGH"
);
if
(
allocated
)
{
memory
->
destroy
(
setflag
);
memory
->
destroy
(
cutsq
);
memory
->
destroy
(
kspring
);
memory
->
destroy
(
s00
);
memory
->
destroy
(
alpha
);
memory
->
destroy
(
cut
);
memory
->
destroy
(
s0_new
);
}
}
/* ---------------------------------------------------------------------- */
void
PairPeriPMB
::
compute
(
int
eflag
,
int
vflag
)
{
int
i
,
j
,
ii
,
jj
,
inum
,
jnum
,
itype
,
jtype
;
double
xtmp
,
ytmp
,
ztmp
,
delx
,
dely
,
delz
;
double
xtmp0
,
ytmp0
,
ztmp0
,
delx0
,
dely0
,
delz0
,
rsq0
;
double
rsq
,
r
,
dr
,
rk
,
evdwl
,
fpair
,
fbond
;
int
*
ilist
,
*
jlist
,
*
numneigh
,
**
firstneigh
;
double
d_ij
,
delta
,
stretch
;
evdwl
=
0.0
;
if
(
eflag
||
vflag
)
ev_setup
(
eflag
,
vflag
);
else
evflag
=
vflag_fdotr
=
0
;
double
**
f
=
atom
->
f
;
double
**
x
=
atom
->
x
;
int
*
type
=
atom
->
type
;
int
nlocal
=
atom
->
nlocal
;
double
*
vfrac
=
atom
->
vfrac
;
double
*
s0
=
atom
->
s0
;
double
**
x0
=
atom
->
x0
;
double
**
r0
=
((
FixPeriNeigh
*
)
modify
->
fix
[
ifix_peri
])
->
r0
;
tagint
**
partner
=
((
FixPeriNeigh
*
)
modify
->
fix
[
ifix_peri
])
->
partner
;
int
*
npartner
=
((
FixPeriNeigh
*
)
modify
->
fix
[
ifix_peri
])
->
npartner
;
// lc = lattice constant
// init_style guarantees it's the same in x, y, and z
double
lc
=
domain
->
lattice
->
xlattice
;
double
half_lc
=
0.5
*
lc
;
double
vfrac_scale
=
1.0
;
// short-range forces
int
newton_pair
=
force
->
newton_pair
;
int
periodic
=
(
domain
->
xperiodic
||
domain
->
yperiodic
||
domain
->
zperiodic
);
inum
=
list
->
inum
;
ilist
=
list
->
ilist
;
numneigh
=
list
->
numneigh
;
firstneigh
=
list
->
firstneigh
;
// loop over neighbors of my atoms
// need minimg() for x0 difference since not ghosted
for
(
ii
=
0
;
ii
<
inum
;
ii
++
)
{
i
=
ilist
[
ii
];
xtmp
=
x
[
i
][
0
];
ytmp
=
x
[
i
][
1
];
ztmp
=
x
[
i
][
2
];
xtmp0
=
x0
[
i
][
0
];
ytmp0
=
x0
[
i
][
1
];
ztmp0
=
x0
[
i
][
2
];
itype
=
type
[
i
];
jlist
=
firstneigh
[
i
];
jnum
=
numneigh
[
i
];
for
(
jj
=
0
;
jj
<
jnum
;
jj
++
)
{
j
=
jlist
[
jj
];
j
&=
NEIGHMASK
;
delx
=
xtmp
-
x
[
j
][
0
];
dely
=
ytmp
-
x
[
j
][
1
];
delz
=
ztmp
-
x
[
j
][
2
];
rsq
=
delx
*
delx
+
dely
*
dely
+
delz
*
delz
;
delx0
=
xtmp0
-
x0
[
j
][
0
];
dely0
=
ytmp0
-
x0
[
j
][
1
];
delz0
=
ztmp0
-
x0
[
j
][
2
];
if
(
periodic
)
domain
->
minimum_image
(
delx0
,
dely0
,
delz0
);
rsq0
=
delx0
*
delx0
+
dely0
*
dely0
+
delz0
*
delz0
;
jtype
=
type
[
j
];
r
=
sqrt
(
rsq
);
// short-range interaction distance based on initial particle position
// 0.9 and 1.35 are constants
d_ij
=
MIN
(
0.9
*
sqrt
(
rsq0
),
1.35
*
lc
);
// short-range contact forces
// 15 is constant taken from the EMU Theory Manual
// Silling, 12 May 2005, p 18
if
(
r
<
d_ij
)
{
dr
=
r
-
d_ij
;
rk
=
(
15.0
*
kspring
[
itype
][
jtype
]
*
vfrac
[
j
])
*
(
dr
/
cut
[
itype
][
jtype
]);
if
(
r
>
0.0
)
fpair
=
-
(
rk
/
r
);
else
fpair
=
0.0
;
f
[
i
][
0
]
+=
delx
*
fpair
;
f
[
i
][
1
]
+=
dely
*
fpair
;
f
[
i
][
2
]
+=
delz
*
fpair
;
if
(
newton_pair
||
j
<
nlocal
)
{
f
[
j
][
0
]
-=
delx
*
fpair
;
f
[
j
][
1
]
-=
dely
*
fpair
;
f
[
j
][
2
]
-=
delz
*
fpair
;
}
if
(
eflag
)
evdwl
=
0.5
*
rk
*
dr
;
if
(
evflag
)
ev_tally
(
i
,
j
,
nlocal
,
newton_pair
,
evdwl
,
0.0
,
fpair
*
vfrac
[
i
],
delx
,
dely
,
delz
);
}
}
}
// grow bond forces array if necessary
if
(
atom
->
nmax
>
nmax
)
{
memory
->
destroy
(
s0_new
);
nmax
=
atom
->
nmax
;
memory
->
create
(
s0_new
,
nmax
,
"pair:s0_new"
);
}
// loop over my particles and their partners
// partner list contains all bond partners, so I-J appears twice
// if bond already broken, skip this partner
// first = true if this is first neighbor of particle i
bool
first
;
for
(
i
=
0
;
i
<
nlocal
;
i
++
)
{
xtmp
=
x
[
i
][
0
];
ytmp
=
x
[
i
][
1
];
ztmp
=
x
[
i
][
2
];
itype
=
type
[
i
];
jnum
=
npartner
[
i
];
s0_new
[
i
]
=
DBL_MAX
;
first
=
true
;
for
(
jj
=
0
;
jj
<
jnum
;
jj
++
)
{
if
(
partner
[
i
][
jj
]
==
0
)
continue
;
j
=
atom
->
map
(
partner
[
i
][
jj
]);
// check if lost a partner without first breaking bond
if
(
j
<
0
)
{
partner
[
i
][
jj
]
=
0
;
continue
;
}
// compute force density, add to PD equation of motion
delx
=
xtmp
-
x
[
j
][
0
];
dely
=
ytmp
-
x
[
j
][
1
];
delz
=
ztmp
-
x
[
j
][
2
];
if
(
periodic
)
domain
->
minimum_image
(
delx
,
dely
,
delz
);
rsq
=
delx
*
delx
+
dely
*
dely
+
delz
*
delz
;
jtype
=
type
[
j
];
delta
=
cut
[
itype
][
jtype
];
r
=
sqrt
(
rsq
);
dr
=
r
-
r0
[
i
][
jj
];
// avoid roundoff errors
if
(
fabs
(
dr
)
<
2.2204e-016
)
dr
=
0.0
;
// scale vfrac[j] if particle j near the horizon
if
((
fabs
(
r0
[
i
][
jj
]
-
delta
))
<=
half_lc
)
vfrac_scale
=
(
-
1.0
/
(
2
*
half_lc
))
*
(
r0
[
i
][
jj
])
+
(
1.0
+
((
delta
-
half_lc
)
/
(
2
*
half_lc
)
)
);
else
vfrac_scale
=
1.0
;
stretch
=
dr
/
r0
[
i
][
jj
];
rk
=
(
kspring
[
itype
][
jtype
]
*
vfrac
[
j
])
*
vfrac_scale
*
stretch
;
if
(
r
>
0.0
)
fbond
=
-
(
rk
/
r
);
else
fbond
=
0.0
;
f
[
i
][
0
]
+=
delx
*
fbond
;
f
[
i
][
1
]
+=
dely
*
fbond
;
f
[
i
][
2
]
+=
delz
*
fbond
;
// since I-J is double counted, set newton off & use 1/2 factor and I,I
if
(
eflag
)
evdwl
=
0.5
*
rk
*
dr
;
if
(
evflag
)
ev_tally
(
i
,
i
,
nlocal
,
0
,
0.5
*
evdwl
,
0.0
,
0.5
*
fbond
*
vfrac
[
i
],
delx
,
dely
,
delz
);
// find stretch in bond I-J and break if necessary
// use s0 from previous timestep
if
(
stretch
>
MIN
(
s0
[
i
],
s0
[
j
]))
partner
[
i
][
jj
]
=
0
;
// update s0 for next timestep
if
(
first
)
s0_new
[
i
]
=
s00
[
itype
][
jtype
]
-
(
alpha
[
itype
][
jtype
]
*
stretch
);
else
s0_new
[
i
]
=
MAX
(
s0_new
[
i
],
s00
[
itype
][
jtype
]
-
(
alpha
[
itype
][
jtype
]
*
stretch
));
first
=
false
;
}
}
// store new s0
for
(
i
=
0
;
i
<
nlocal
;
i
++
)
s0
[
i
]
=
s0_new
[
i
];
}
/* ----------------------------------------------------------------------
allocate all arrays
------------------------------------------------------------------------- */
void
PairPeriPMB
::
allocate
()
{
allocated
=
1
;
int
n
=
atom
->
ntypes
;
memory
->
create
(
setflag
,
n
+
1
,
n
+
1
,
"pair:setflag"
);
for
(
int
i
=
1
;
i
<=
n
;
i
++
)
for
(
int
j
=
i
;
j
<=
n
;
j
++
)
setflag
[
i
][
j
]
=
0
;
memory
->
create
(
cutsq
,
n
+
1
,
n
+
1
,
"pair:cutsq"
);
memory
->
create
(
kspring
,
n
+
1
,
n
+
1
,
"pair:kspring"
);
memory
->
create
(
s00
,
n
+
1
,
n
+
1
,
"pair:s00"
);
memory
->
create
(
alpha
,
n
+
1
,
n
+
1
,
"pair:alpha"
);
memory
->
create
(
cut
,
n
+
1
,
n
+
1
,
"pair:cut"
);
}
/* ----------------------------------------------------------------------
global settings
------------------------------------------------------------------------- */
void
PairPeriPMB
::
settings
(
int
narg
,
char
**
arg
)
{
if
(
narg
)
error
->
all
(
FLERR
,
"Illegal pair_style command"
);
}
/* ----------------------------------------------------------------------
set coeffs for one or more type pairs
------------------------------------------------------------------------- */
void
PairPeriPMB
::
coeff
(
int
narg
,
char
**
arg
)
{
if
(
narg
!=
6
)
error
->
all
(
FLERR
,
"Incorrect args for pair coefficients"
);
if
(
!
allocated
)
allocate
();
int
ilo
,
ihi
,
jlo
,
jhi
;
force
->
bounds
(
arg
[
0
],
atom
->
ntypes
,
ilo
,
ihi
);
force
->
bounds
(
arg
[
1
],
atom
->
ntypes
,
jlo
,
jhi
);
double
kspring_one
=
force
->
numeric
(
FLERR
,
arg
[
2
]);
double
cut_one
=
force
->
numeric
(
FLERR
,
arg
[
3
]);
double
s00_one
=
force
->
numeric
(
FLERR
,
arg
[
4
]);
double
alpha_one
=
force
->
numeric
(
FLERR
,
arg
[
5
]);
int
count
=
0
;
for
(
int
i
=
ilo
;
i
<=
ihi
;
i
++
)
{
for
(
int
j
=
MAX
(
jlo
,
i
);
j
<=
jhi
;
j
++
)
{
kspring
[
i
][
j
]
=
kspring_one
;
s00
[
i
][
j
]
=
s00_one
;
alpha
[
i
][
j
]
=
alpha_one
;
cut
[
i
][
j
]
=
cut_one
;
setflag
[
i
][
j
]
=
1
;
count
++
;
}
}
if
(
count
==
0
)
error
->
all
(
FLERR
,
"Incorrect args for pair coefficients"
);
}
/* ----------------------------------------------------------------------
init for one type pair i,j and corresponding j,i
------------------------------------------------------------------------- */
double
PairPeriPMB
::
init_one
(
int
i
,
int
j
)
{
if
(
setflag
[
i
][
j
]
==
0
)
error
->
all
(
FLERR
,
"All pair coeffs are not set"
);
kspring
[
j
][
i
]
=
kspring
[
i
][
j
];
alpha
[
j
][
i
]
=
alpha
[
i
][
j
];
s00
[
j
][
i
]
=
s00
[
i
][
j
];
cut
[
j
][
i
]
=
cut
[
i
][
j
];
return
cut
[
i
][
j
];
}
/* ----------------------------------------------------------------------
init specific to this pair style
------------------------------------------------------------------------- */
void
PairPeriPMB
::
init_style
()
{
// error checks
if
(
!
atom
->
peri_flag
)
error
->
all
(
FLERR
,
"Pair style peri requires atom style peri"
);
if
(
atom
->
map_style
==
0
)
error
->
all
(
FLERR
,
"Pair peri requires an atom map, see atom_modify"
);
if
(
domain
->
lattice
->
xlattice
!=
domain
->
lattice
->
ylattice
||
domain
->
lattice
->
xlattice
!=
domain
->
lattice
->
zlattice
||
domain
->
lattice
->
ylattice
!=
domain
->
lattice
->
zlattice
)
error
->
all
(
FLERR
,
"Pair peri lattice is not identical in x, y, and z"
);
// if first init, create Fix needed for storing fixed neighbors
if
(
ifix_peri
==
-
1
)
{
char
**
fixarg
=
new
char
*
[
3
];
fixarg
[
0
]
=
(
char
*
)
"PERI_NEIGH"
;
fixarg
[
1
]
=
(
char
*
)
"all"
;
fixarg
[
2
]
=
(
char
*
)
"PERI_NEIGH"
;
modify
->
add_fix
(
3
,
fixarg
);
delete
[]
fixarg
;
}
// find associated PERI_NEIGH fix that must exist
// could have changed locations in fix list since created
for
(
int
i
=
0
;
i
<
modify
->
nfix
;
i
++
)
if
(
strcmp
(
modify
->
fix
[
i
]
->
style
,
"PERI_NEIGH"
)
==
0
)
ifix_peri
=
i
;
if
(
ifix_peri
==
-
1
)
error
->
all
(
FLERR
,
"Fix peri neigh does not exist"
);
neighbor
->
request
(
this
,
instance_me
);
}
/* ----------------------------------------------------------------------
proc 0 writes to restart file
------------------------------------------------------------------------- */
void
PairPeriPMB
::
write_restart
(
FILE
*
fp
)
{
int
i
,
j
;
for
(
i
=
1
;
i
<=
atom
->
ntypes
;
i
++
)
for
(
j
=
i
;
j
<=
atom
->
ntypes
;
j
++
)
{
fwrite
(
&
setflag
[
i
][
j
],
sizeof
(
int
),
1
,
fp
);
if
(
setflag
[
i
][
j
])
{
fwrite
(
&
kspring
[
i
][
j
],
sizeof
(
double
),
1
,
fp
);
fwrite
(
&
s00
[
i
][
j
],
sizeof
(
double
),
1
,
fp
);
fwrite
(
&
alpha
[
i
][
j
],
sizeof
(
double
),
1
,
fp
);
fwrite
(
&
cut
[
i
][
j
],
sizeof
(
double
),
1
,
fp
);
}
}
}
/* ----------------------------------------------------------------------
proc 0 reads from restart file, bcasts
------------------------------------------------------------------------- */
void
PairPeriPMB
::
read_restart
(
FILE
*
fp
)
{
allocate
();
int
i
,
j
;
int
me
=
comm
->
me
;
for
(
i
=
1
;
i
<=
atom
->
ntypes
;
i
++
)
for
(
j
=
i
;
j
<=
atom
->
ntypes
;
j
++
)
{
if
(
me
==
0
)
fread
(
&
setflag
[
i
][
j
],
sizeof
(
int
),
1
,
fp
);
MPI_Bcast
(
&
setflag
[
i
][
j
],
1
,
MPI_INT
,
0
,
world
);
if
(
setflag
[
i
][
j
])
{
if
(
me
==
0
)
{
fread
(
&
kspring
[
i
][
j
],
sizeof
(
double
),
1
,
fp
);
fread
(
&
s00
[
i
][
j
],
sizeof
(
double
),
1
,
fp
);
fread
(
&
alpha
[
i
][
j
],
sizeof
(
double
),
1
,
fp
);
fread
(
&
cut
[
i
][
j
],
sizeof
(
double
),
1
,
fp
);
}
MPI_Bcast
(
&
kspring
[
i
][
j
],
1
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
s00
[
i
][
j
],
1
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
alpha
[
i
][
j
],
1
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
cut
[
i
][
j
],
1
,
MPI_DOUBLE
,
0
,
world
);
}
}
}
/* ---------------------------------------------------------------------- */
double
PairPeriPMB
::
single
(
int
i
,
int
j
,
int
itype
,
int
jtype
,
double
rsq
,
double
factor_coul
,
double
factor_lj
,
double
&
fforce
)
{
double
delx0
,
dely0
,
delz0
,
rsq0
;
double
d_ij
,
r
,
dr
,
rk
,
vfrac_scale
;
double
*
vfrac
=
atom
->
vfrac
;
double
**
x0
=
atom
->
x0
;
double
**
r0
=
((
FixPeriNeigh
*
)
modify
->
fix
[
ifix_peri
])
->
r0
;
tagint
**
partner
=
((
FixPeriNeigh
*
)
modify
->
fix
[
ifix_peri
])
->
partner
;
int
*
npartner
=
((
FixPeriNeigh
*
)
modify
->
fix
[
ifix_peri
])
->
npartner
;
double
lc
=
domain
->
lattice
->
xlattice
;
double
half_lc
=
0.5
*
lc
;
delx0
=
x0
[
i
][
0
]
-
x0
[
j
][
0
];
dely0
=
x0
[
i
][
1
]
-
x0
[
j
][
1
];
delz0
=
x0
[
i
][
2
]
-
x0
[
j
][
2
];
int
periodic
=
domain
->
xperiodic
||
domain
->
yperiodic
||
domain
->
zperiodic
;
if
(
periodic
)
domain
->
minimum_image
(
delx0
,
dely0
,
delz0
);
rsq0
=
delx0
*
delx0
+
dely0
*
dely0
+
delz0
*
delz0
;
d_ij
=
MIN
(
0.9
*
sqrt
(
rsq0
),
1.35
*
lc
);
r
=
sqrt
(
rsq
);
double
energy
=
0.0
;
fforce
=
0.0
;
if
(
r
<
d_ij
)
{
dr
=
r
-
d_ij
;
rk
=
(
15.0
*
kspring
[
itype
][
jtype
]
*
vfrac
[
j
])
*
(
dr
/
sqrt
(
cutsq
[
itype
][
jtype
]));
if
(
r
>
0.0
)
fforce
+=
-
(
rk
/
r
);
energy
+=
0.5
*
rk
*
dr
;
}
int
jnum
=
npartner
[
i
];
for
(
int
jj
=
0
;
jj
<
jnum
;
jj
++
)
{
if
(
partner
[
i
][
jj
]
==
0
)
continue
;
if
(
j
<
0
)
continue
;
if
(
j
==
atom
->
map
(
partner
[
i
][
jj
]))
{
dr
=
r
-
r0
[
i
][
jj
];
if
(
fabs
(
dr
)
<
2.2204e-016
)
dr
=
0.0
;
if
(
(
fabs
(
r0
[
i
][
jj
]
-
sqrt
(
cutsq
[
itype
][
jtype
])))
<=
half_lc
)
vfrac_scale
=
(
-
1.0
/
(
2
*
half_lc
))
*
(
r0
[
i
][
jj
])
+
(
1.0
+
((
sqrt
(
cutsq
[
itype
][
jtype
])
-
half_lc
)
/
(
2
*
half_lc
)));
else
vfrac_scale
=
1.0
;
rk
=
(
kspring
[
itype
][
jtype
]
*
vfrac
[
j
]
*
vfrac_scale
)
*
(
dr
/
r0
[
i
][
jj
]);
if
(
r
>
0.0
)
fforce
+=
-
(
rk
/
r
);
energy
+=
0.5
*
rk
*
dr
;
}
}
return
energy
;
}
/* ----------------------------------------------------------------------
memory usage of local atom-based arrays
------------------------------------------------------------------------- */
double
PairPeriPMB
::
memory_usage
()
{
double
bytes
=
nmax
*
sizeof
(
double
);
return
bytes
;
}
Event Timeline
Log In to Comment