Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91551978
fix_lb_pc.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Nov 12, 03:50
Size
13 KB
Mime Type
text/x-c
Expires
Thu, Nov 14, 03:50 (2 d)
Engine
blob
Format
Raw Data
Handle
22222605
Attached To
rLAMMPS lammps
fix_lb_pc.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing authors: Frances Mackay, Santtu Ollila, Colin Denniston (UWO)
------------------------------------------------------------------------- */
#include "math.h"
#include "stdio.h"
#include "string.h"
#include "fix_lb_pc.h"
#include "atom.h"
#include "force.h"
#include "update.h"
#include "respa.h"
#include "error.h"
#include "memory.h"
#include "comm.h"
#include "domain.h"
#include "fix_lb_fluid.h"
#include "modify.h"
#include "mpi.h"
#include "group.h"
using
namespace
LAMMPS_NS
;
using
namespace
FixConst
;
/* ---------------------------------------------------------------------- */
FixLbPC
::
FixLbPC
(
LAMMPS
*
lmp
,
int
narg
,
char
**
arg
)
:
Fix
(
lmp
,
narg
,
arg
)
{
if
(
narg
<
3
)
error
->
all
(
FLERR
,
"Illegal fix lb/pc command"
);
time_integrate
=
1
;
// perform initial allocation of atom-based array
// register with Atom class
force_old
=
NULL
;
up
=
NULL
;
up_old
=
NULL
;
grow_arrays
(
atom
->
nmax
);
atom
->
add_callback
(
0
);
Gamma_MD
=
new
double
[
atom
->
ntypes
+
1
];
int
groupbit_lb_fluid
=
0
;
for
(
int
ifix
=
0
;
ifix
<
modify
->
nfix
;
ifix
++
)
if
(
strcmp
(
modify
->
fix
[
ifix
]
->
style
,
"lb/fluid"
)
==
0
){
fix_lb_fluid
=
(
FixLbFluid
*
)
modify
->
fix
[
ifix
];
groupbit_lb_fluid
=
group
->
bitmask
[
modify
->
fix
[
ifix
]
->
igroup
];
}
if
(
groupbit_lb_fluid
==
0
)
error
->
all
(
FLERR
,
"the lb/fluid fix must also be used if using the lb/pc fix"
);
int
*
mask
=
atom
->
mask
;
int
nlocal
=
atom
->
nlocal
;
for
(
int
j
=
0
;
j
<
nlocal
;
j
++
){
if
((
mask
[
j
]
&
groupbit
)
&&
!
(
mask
[
j
]
&
groupbit_lb_fluid
))
error
->
one
(
FLERR
,
"can only use the lb/pc fix for an atom if also using the lb/fluid fix for that atom"
);
}
}
/* ---------------------------------------------------------------------- */
FixLbPC
::~
FixLbPC
()
{
atom
->
delete_callback
(
id
,
0
);
memory
->
destroy
(
force_old
);
memory
->
destroy
(
up
);
memory
->
destroy
(
up_old
);
delete
[]
Gamma_MD
;
}
/* ---------------------------------------------------------------------- */
int
FixLbPC
::
setmask
()
{
int
mask
=
0
;
mask
|=
INITIAL_INTEGRATE
;
mask
|=
FINAL_INTEGRATE
;
return
mask
;
}
/* ---------------------------------------------------------------------- */
void
FixLbPC
::
init
()
{
double
*
Gamma
=
fix_lb_fluid
->
Gamma
;
double
dm_lb
=
fix_lb_fluid
->
dm_lb
;
double
dt_lb
=
fix_lb_fluid
->
dt_lb
;
MPI_Comm_rank
(
world
,
&
me
);
dtv
=
update
->
dt
;
dtf
=
update
->
dt
*
force
->
ftm2v
;
for
(
int
i
=
0
;
i
<=
atom
->
ntypes
;
i
++
)
Gamma_MD
[
i
]
=
Gamma
[
i
]
*
dm_lb
/
dt_lb
;
}
/* ---------------------------------------------------------------------- */
void
FixLbPC
::
initial_integrate
(
int
vflag
)
{
double
dtfm
;
double
**
x
=
atom
->
x
;
double
dx
[
3
];
double
**
v
=
atom
->
v
;
double
**
f
=
atom
->
f
;
double
*
mass
=
atom
->
mass
;
double
*
rmass
=
atom
->
rmass
;
int
*
type
=
atom
->
type
;
int
*
mask
=
atom
->
mask
;
int
nlocal
=
atom
->
nlocal
;
if
(
igroup
==
atom
->
firstgroup
)
nlocal
=
atom
->
nfirst
;
compute_up
();
for
(
int
i
=
0
;
i
<
nlocal
;
i
++
){
up_old
[
i
][
0
]
=
up
[
i
][
0
];
up_old
[
i
][
1
]
=
up
[
i
][
1
];
up_old
[
i
][
2
]
=
up
[
i
][
2
];
force_old
[
i
][
0
]
=
f
[
i
][
0
];
force_old
[
i
][
1
]
=
f
[
i
][
1
];
force_old
[
i
][
2
]
=
f
[
i
][
2
];
}
if
(
rmass
){
for
(
int
i
=
0
;
i
<
nlocal
;
i
++
)
{
if
(
mask
[
i
]
&
groupbit
)
{
dtfm
=
dtf
/
rmass
[
i
];
expminusdttimesgamma
=
exp
(
-
dtv
*
Gamma_MD
[
type
[
i
]]
/
rmass
[
i
]);
dx
[
0
]
=
dtv
*
v
[
i
][
0
]
+
0.5
*
(
f
[
i
][
0
]
*
force
->
ftm2v
-
Gamma_MD
[
type
[
i
]]
*
(
v
[
i
][
0
]
-
up
[
i
][
0
]))
*
dtv
*
dtv
/
rmass
[
i
];
dx
[
1
]
=
dtv
*
v
[
i
][
1
]
+
0.5
*
(
f
[
i
][
1
]
*
force
->
ftm2v
-
Gamma_MD
[
type
[
i
]]
*
(
v
[
i
][
1
]
-
up
[
i
][
1
]))
*
dtv
*
dtv
/
rmass
[
i
];
dx
[
2
]
=
dtv
*
v
[
i
][
2
]
+
0.5
*
(
f
[
i
][
2
]
*
force
->
ftm2v
-
Gamma_MD
[
type
[
i
]]
*
(
v
[
i
][
2
]
-
up
[
i
][
2
]))
*
dtv
*
dtv
/
rmass
[
i
];
x
[
i
][
0
]
+=
dx
[
0
];
x
[
i
][
1
]
+=
dx
[
1
];
x
[
i
][
2
]
+=
dx
[
2
];
// Approximation for v
if
(
Gamma_MD
[
type
[
i
]]
==
0.0
){
v
[
i
][
0
]
+=
f
[
i
][
0
]
*
dtfm
;
v
[
i
][
1
]
+=
f
[
i
][
1
]
*
dtfm
;
v
[
i
][
2
]
+=
f
[
i
][
2
]
*
dtfm
;
}
else
{
v
[
i
][
0
]
=
(
v
[
i
][
0
]
-
up
[
i
][
0
]
-
f
[
i
][
0
]
*
force
->
ftm2v
/
Gamma_MD
[
type
[
i
]])
*
expminusdttimesgamma
+
f
[
i
][
0
]
*
force
->
ftm2v
/
Gamma_MD
[
type
[
i
]]
+
up
[
i
][
0
];
v
[
i
][
1
]
=
(
v
[
i
][
1
]
-
up
[
i
][
1
]
-
f
[
i
][
1
]
*
force
->
ftm2v
/
Gamma_MD
[
type
[
i
]])
*
expminusdttimesgamma
+
f
[
i
][
1
]
*
force
->
ftm2v
/
Gamma_MD
[
type
[
i
]]
+
up
[
i
][
1
];
v
[
i
][
2
]
=
(
v
[
i
][
2
]
-
up
[
i
][
2
]
-
f
[
i
][
2
]
*
force
->
ftm2v
/
Gamma_MD
[
type
[
i
]])
*
expminusdttimesgamma
+
f
[
i
][
2
]
*
force
->
ftm2v
/
Gamma_MD
[
type
[
i
]]
+
up
[
i
][
2
];
}
}
}
}
else
{
// this does NOT take varying masses into account
for
(
int
i
=
0
;
i
<
nlocal
;
i
++
)
{
if
(
mask
[
i
]
&
groupbit
)
{
dtfm
=
dtf
/
mass
[
type
[
i
]];
expminusdttimesgamma
=
exp
(
-
dtv
*
Gamma_MD
[
type
[
i
]]
/
mass
[
type
[
i
]]);
dx
[
0
]
=
dtv
*
v
[
i
][
0
]
+
0.5
*
(
f
[
i
][
0
]
*
force
->
ftm2v
-
Gamma_MD
[
type
[
i
]]
*
(
v
[
i
][
0
]
-
up
[
i
][
0
]))
*
dtv
*
dtv
/
mass
[
type
[
i
]];
dx
[
1
]
=
dtv
*
v
[
i
][
1
]
+
0.5
*
(
f
[
i
][
1
]
*
force
->
ftm2v
-
Gamma_MD
[
type
[
i
]]
*
(
v
[
i
][
1
]
-
up
[
i
][
1
]))
*
dtv
*
dtv
/
mass
[
type
[
i
]];
dx
[
2
]
=
dtv
*
v
[
i
][
2
]
+
0.5
*
(
f
[
i
][
2
]
*
force
->
ftm2v
-
Gamma_MD
[
type
[
i
]]
*
(
v
[
i
][
2
]
-
up
[
i
][
2
]))
*
dtv
*
dtv
/
mass
[
type
[
i
]];
x
[
i
][
0
]
+=
dx
[
0
];
x
[
i
][
1
]
+=
dx
[
1
];
x
[
i
][
2
]
+=
dx
[
2
];
// Approximation for v
if
(
Gamma_MD
[
type
[
i
]]
==
0.0
){
v
[
i
][
0
]
+=
f
[
i
][
0
]
*
dtfm
;
v
[
i
][
1
]
+=
f
[
i
][
1
]
*
dtfm
;
v
[
i
][
2
]
+=
f
[
i
][
2
]
*
dtfm
;
}
else
{
v
[
i
][
0
]
=
(
v
[
i
][
0
]
-
up
[
i
][
0
]
-
f
[
i
][
0
]
*
force
->
ftm2v
/
Gamma_MD
[
type
[
i
]])
*
expminusdttimesgamma
+
f
[
i
][
0
]
*
force
->
ftm2v
/
Gamma_MD
[
type
[
i
]]
+
up
[
i
][
0
];
v
[
i
][
1
]
=
(
v
[
i
][
1
]
-
up
[
i
][
1
]
-
f
[
i
][
1
]
*
force
->
ftm2v
/
Gamma_MD
[
type
[
i
]])
*
expminusdttimesgamma
+
f
[
i
][
1
]
*
force
->
ftm2v
/
Gamma_MD
[
type
[
i
]]
+
up
[
i
][
1
];
v
[
i
][
2
]
=
(
v
[
i
][
2
]
-
up
[
i
][
2
]
-
f
[
i
][
2
]
*
force
->
ftm2v
/
Gamma_MD
[
type
[
i
]])
*
expminusdttimesgamma
+
f
[
i
][
2
]
*
force
->
ftm2v
/
Gamma_MD
[
type
[
i
]]
+
up
[
i
][
2
];
}
}
}
}
}
/* ---------------------------------------------------------------------- */
void
FixLbPC
::
final_integrate
()
{
double
dtfm
;
double
**
v
=
atom
->
v
;
double
**
f
=
atom
->
f
;
double
*
mass
=
atom
->
mass
;
double
*
rmass
=
atom
->
rmass
;
int
*
type
=
atom
->
type
;
int
*
mask
=
atom
->
mask
;
int
nlocal
=
atom
->
nlocal
;
if
(
igroup
==
atom
->
firstgroup
)
nlocal
=
atom
->
nfirst
;
compute_up
();
if
(
rmass
){
for
(
int
i
=
0
;
i
<
nlocal
;
i
++
)
{
if
(
mask
[
i
]
&
groupbit
)
{
dtfm
=
dtf
/
rmass
[
i
];
expminusdttimesgamma
=
exp
(
-
dtv
*
Gamma_MD
[
type
[
i
]]
/
rmass
[
i
]);
DMDcoeff
=
(
dtv
-
rmass
[
i
]
*
(
1.0
-
expminusdttimesgamma
)
/
Gamma_MD
[
type
[
i
]]);
if
(
Gamma_MD
[
type
[
i
]]
==
0.0
){
v
[
i
][
0
]
+=
0.5
*
(
f
[
i
][
0
]
-
force_old
[
i
][
0
])
*
dtfm
;
v
[
i
][
1
]
+=
0.5
*
(
f
[
i
][
1
]
-
force_old
[
i
][
1
])
*
dtfm
;
v
[
i
][
2
]
+=
0.5
*
(
f
[
i
][
2
]
-
force_old
[
i
][
2
])
*
dtfm
;
}
else
{
v
[
i
][
0
]
+=
DMDcoeff
*
((
f
[
i
][
0
]
-
force_old
[
i
][
0
])
*
force
->
ftm2v
/
Gamma_MD
[
type
[
i
]]
+
up
[
i
][
0
]
-
up_old
[
i
][
0
])
/
dtv
;
v
[
i
][
1
]
+=
DMDcoeff
*
((
f
[
i
][
1
]
-
force_old
[
i
][
1
])
*
force
->
ftm2v
/
Gamma_MD
[
type
[
i
]]
+
up
[
i
][
1
]
-
up_old
[
i
][
1
])
/
dtv
;
v
[
i
][
2
]
+=
DMDcoeff
*
((
f
[
i
][
2
]
-
force_old
[
i
][
2
])
*
force
->
ftm2v
/
Gamma_MD
[
type
[
i
]]
+
up
[
i
][
2
]
-
up_old
[
i
][
2
])
/
dtv
;
}
}
}
}
else
{
// this does NOT take varying masses into account
for
(
int
i
=
0
;
i
<
nlocal
;
i
++
)
{
if
(
mask
[
i
]
&
groupbit
)
{
dtfm
=
dtf
/
mass
[
type
[
i
]];
expminusdttimesgamma
=
exp
(
-
dtv
*
Gamma_MD
[
type
[
i
]]
/
mass
[
type
[
i
]]);
DMDcoeff
=
(
dtv
-
mass
[
type
[
i
]]
*
(
1.0
-
expminusdttimesgamma
)
/
Gamma_MD
[
type
[
i
]]);
if
(
Gamma_MD
[
type
[
i
]]
==
0.0
){
v
[
i
][
0
]
+=
0.5
*
(
f
[
i
][
0
]
-
force_old
[
i
][
0
])
*
dtfm
;
v
[
i
][
1
]
+=
0.5
*
(
f
[
i
][
1
]
-
force_old
[
i
][
1
])
*
dtfm
;
v
[
i
][
2
]
+=
0.5
*
(
f
[
i
][
2
]
-
force_old
[
i
][
2
])
*
dtfm
;
}
else
{
v
[
i
][
0
]
+=
DMDcoeff
*
((
f
[
i
][
0
]
-
force_old
[
i
][
0
])
*
force
->
ftm2v
/
Gamma_MD
[
type
[
i
]]
+
up
[
i
][
0
]
-
up_old
[
i
][
0
])
/
dtv
;
v
[
i
][
1
]
+=
DMDcoeff
*
((
f
[
i
][
1
]
-
force_old
[
i
][
1
])
*
force
->
ftm2v
/
Gamma_MD
[
type
[
i
]]
+
up
[
i
][
1
]
-
up_old
[
i
][
1
])
/
dtv
;
v
[
i
][
2
]
+=
DMDcoeff
*
((
f
[
i
][
2
]
-
force_old
[
i
][
2
])
*
force
->
ftm2v
/
Gamma_MD
[
type
[
i
]]
+
up
[
i
][
2
]
-
up_old
[
i
][
2
])
/
dtv
;
}
}
}
}
}
/* ----------------------------------------------------------------------
allocate atom-based array
------------------------------------------------------------------------- */
void
FixLbPC
::
grow_arrays
(
int
nmax
)
{
memory
->
grow
(
force_old
,
nmax
,
3
,
"FixLbPC:force_old"
);
memory
->
grow
(
up_old
,
nmax
,
3
,
"FixLbPC:up_old"
);
memory
->
grow
(
up
,
nmax
,
3
,
"FixLbPC:up"
);
}
/* ----------------------------------------------------------------------
copy values within local atom-based array
------------------------------------------------------------------------- */
void
FixLbPC
::
copy_arrays
(
int
i
,
int
j
,
int
delflag
)
{
force_old
[
j
][
0
]
=
force_old
[
i
][
0
];
force_old
[
j
][
1
]
=
force_old
[
i
][
1
];
force_old
[
j
][
2
]
=
force_old
[
i
][
2
];
up_old
[
j
][
0
]
=
up_old
[
i
][
0
];
up_old
[
j
][
1
]
=
up_old
[
i
][
1
];
up_old
[
j
][
2
]
=
up_old
[
i
][
2
];
up
[
j
][
0
]
=
up
[
i
][
0
];
up
[
j
][
1
]
=
up
[
i
][
1
];
up
[
j
][
2
]
=
up
[
i
][
2
];
}
/* ----------------------------------------------------------------------
pack values in local atom-based array for exchange with another proc
------------------------------------------------------------------------- */
int
FixLbPC
::
pack_exchange
(
int
i
,
double
*
buf
)
{
buf
[
0
]
=
force_old
[
i
][
0
];
buf
[
1
]
=
force_old
[
i
][
1
];
buf
[
2
]
=
force_old
[
i
][
2
];
buf
[
3
]
=
up_old
[
i
][
0
];
buf
[
4
]
=
up_old
[
i
][
1
];
buf
[
5
]
=
up_old
[
i
][
2
];
buf
[
6
]
=
up
[
i
][
0
];
buf
[
7
]
=
up
[
i
][
1
];
buf
[
8
]
=
up
[
i
][
2
];
return
9
;
}
/* ----------------------------------------------------------------------
unpack values in local atom-based array from exchange with another proc
------------------------------------------------------------------------- */
int
FixLbPC
::
unpack_exchange
(
int
nlocal
,
double
*
buf
)
{
force_old
[
nlocal
][
0
]
=
buf
[
0
];
force_old
[
nlocal
][
1
]
=
buf
[
1
];
force_old
[
nlocal
][
2
]
=
buf
[
2
];
up_old
[
nlocal
][
0
]
=
buf
[
3
];
up_old
[
nlocal
][
1
]
=
buf
[
4
];
up_old
[
nlocal
][
2
]
=
buf
[
5
];
up
[
nlocal
][
0
]
=
buf
[
6
];
up
[
nlocal
][
1
]
=
buf
[
7
];
up
[
nlocal
][
2
]
=
buf
[
8
];
return
9
;
}
/* ---------------------------------------------------------------------- */
void
FixLbPC
::
compute_up
(
void
)
{
int
*
mask
=
atom
->
mask
;
int
nlocal
=
atom
->
nlocal
;
double
**
x
=
atom
->
x
;
int
i
,
k
;
int
ix
,
iy
,
iz
;
int
ixp
,
iyp
,
izp
;
double
dx1
,
dy1
,
dz1
;
int
isten
,
ii
,
jj
,
kk
;
double
r
,
rsq
,
weightx
,
weighty
,
weightz
;
double
****
u_lb
=
fix_lb_fluid
->
u_lb
;
int
subNbx
=
fix_lb_fluid
->
subNbx
;
int
subNby
=
fix_lb_fluid
->
subNby
;
int
subNbz
=
fix_lb_fluid
->
subNbz
;
double
dx_lb
=
fix_lb_fluid
->
dx_lb
;
double
dt_lb
=
fix_lb_fluid
->
dt_lb
;
double
FfP
[
64
];
int
trilinear_stencil
=
fix_lb_fluid
->
trilinear_stencil
;
for
(
i
=
0
;
i
<
nlocal
;
i
++
){
if
(
mask
[
i
]
&
groupbit
){
//Calculate nearest leftmost grid point.
//Since array indices from 1 to subNb-2 correspond to the
// local subprocessor domain (not indices from 0), use the
// ceiling value.
ix
=
(
int
)
ceil
((
x
[
i
][
0
]
-
domain
->
sublo
[
0
])
/
dx_lb
);
iy
=
(
int
)
ceil
((
x
[
i
][
1
]
-
domain
->
sublo
[
1
])
/
dx_lb
);
iz
=
(
int
)
ceil
((
x
[
i
][
2
]
-
domain
->
sublo
[
2
])
/
dx_lb
);
//Calculate distances to the nearest points.
dx1
=
x
[
i
][
0
]
-
(
domain
->
sublo
[
0
]
+
(
ix
-
1
)
*
dx_lb
);
dy1
=
x
[
i
][
1
]
-
(
domain
->
sublo
[
1
]
+
(
iy
-
1
)
*
dx_lb
);
dz1
=
x
[
i
][
2
]
-
(
domain
->
sublo
[
2
]
+
(
iz
-
1
)
*
dx_lb
);
// Need to convert these to lattice units:
dx1
=
dx1
/
dx_lb
;
dy1
=
dy1
/
dx_lb
;
dz1
=
dz1
/
dx_lb
;
up
[
i
][
0
]
=
0.0
;
up
[
i
][
1
]
=
0.0
;
up
[
i
][
2
]
=
0.0
;
if
(
trilinear_stencil
==
0
){
isten
=
0
;
for
(
ii
=-
1
;
ii
<
3
;
ii
++
){
rsq
=
(
-
dx1
+
ii
)
*
(
-
dx1
+
ii
);
if
(
rsq
>=
4
)
weightx
=
0.0
;
else
{
r
=
sqrt
(
rsq
);
if
(
rsq
>
1
){
weightx
=
(
5.0
-
2.0
*
r
-
sqrt
(
-
7.0
+
12.0
*
r
-
4.0
*
rsq
))
/
8.
;
}
else
{
weightx
=
(
3.0
-
2.0
*
r
+
sqrt
(
1.0
+
4.0
*
r
-
4.0
*
rsq
))
/
8.
;
}
}
for
(
jj
=-
1
;
jj
<
3
;
jj
++
){
rsq
=
(
-
dy1
+
jj
)
*
(
-
dy1
+
jj
);
if
(
rsq
>=
4
)
weighty
=
0.0
;
else
{
r
=
sqrt
(
rsq
);
if
(
rsq
>
1
){
weighty
=
(
5.0
-
2.0
*
r
-
sqrt
(
-
7.0
+
12.0
*
r
-
4.0
*
rsq
))
/
8.
;
}
else
{
weighty
=
(
3.0
-
2.0
*
r
+
sqrt
(
1.0
+
4.0
*
r
-
4.0
*
rsq
))
/
8.
;
}
}
for
(
kk
=-
1
;
kk
<
3
;
kk
++
){
rsq
=
(
-
dz1
+
kk
)
*
(
-
dz1
+
kk
);
if
(
rsq
>=
4
)
weightz
=
0.0
;
else
{
r
=
sqrt
(
rsq
);
if
(
rsq
>
1
){
weightz
=
(
5.0
-
2.0
*
r
-
sqrt
(
-
7.0
+
12.0
*
r
-
4.0
*
rsq
))
/
8.
;
}
else
{
weightz
=
(
3.0
-
2.0
*
r
+
sqrt
(
1.0
+
4.0
*
r
-
4.0
*
rsq
))
/
8.
;
}
}
ixp
=
ix
+
ii
;
iyp
=
iy
+
jj
;
izp
=
iz
+
kk
;
if
(
ixp
==-
1
)
ixp
=
subNbx
+
2
;
if
(
iyp
==-
1
)
iyp
=
subNby
+
2
;
if
(
izp
==-
1
)
izp
=
subNbz
+
2
;
FfP
[
isten
]
=
weightx
*
weighty
*
weightz
;
// interpolated velocity based on delta function.
for
(
k
=
0
;
k
<
3
;
k
++
){
up
[
i
][
k
]
+=
u_lb
[
ixp
][
iyp
][
izp
][
k
]
*
FfP
[
isten
];
}
}
}
}
}
else
{
FfP
[
0
]
=
(
1.
-
dx1
)
*
(
1.
-
dy1
)
*
(
1.
-
dz1
);
FfP
[
1
]
=
(
1.
-
dx1
)
*
(
1.
-
dy1
)
*
dz1
;
FfP
[
2
]
=
(
1.
-
dx1
)
*
dy1
*
(
1.
-
dz1
);
FfP
[
3
]
=
(
1.
-
dx1
)
*
dy1
*
dz1
;
FfP
[
4
]
=
dx1
*
(
1.
-
dy1
)
*
(
1.
-
dz1
);
FfP
[
5
]
=
dx1
*
(
1.
-
dy1
)
*
dz1
;
FfP
[
6
]
=
dx1
*
dy1
*
(
1.
-
dz1
);
FfP
[
7
]
=
dx1
*
dy1
*
dz1
;
ixp
=
(
ix
+
1
);
iyp
=
(
iy
+
1
);
izp
=
(
iz
+
1
);
for
(
k
=
0
;
k
<
3
;
k
++
)
{
// tri-linearly interpolated velocity at node
up
[
i
][
k
]
=
u_lb
[
ix
][
iy
][
iz
][
k
]
*
FfP
[
0
]
+
u_lb
[
ix
][
iy
][
izp
][
k
]
*
FfP
[
1
]
+
u_lb
[
ix
][
iyp
][
iz
][
k
]
*
FfP
[
2
]
+
u_lb
[
ix
][
iyp
][
izp
][
k
]
*
FfP
[
3
]
+
u_lb
[
ixp
][
iy
][
iz
][
k
]
*
FfP
[
4
]
+
u_lb
[
ixp
][
iy
][
izp
][
k
]
*
FfP
[
5
]
+
u_lb
[
ixp
][
iyp
][
iz
][
k
]
*
FfP
[
6
]
+
u_lb
[
ixp
][
iyp
][
izp
][
k
]
*
FfP
[
7
];
}
}
for
(
k
=
0
;
k
<
3
;
k
++
)
up
[
i
][
k
]
=
up
[
i
][
k
]
*
dx_lb
/
dt_lb
;
}
}
}
Event Timeline
Log In to Comment