Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90881697
pair_eim_omp.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Nov 5, 15:26
Size
9 KB
Mime Type
text/x-c++
Expires
Thu, Nov 7, 15:26 (2 d)
Engine
blob
Format
Raw Data
Handle
22150223
Attached To
rLAMMPS lammps
pair_eim_omp.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
This software is distributed under the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Axel Kohlmeyer (Temple U)
------------------------------------------------------------------------- */
#include "math.h"
#include "string.h"
#include "pair_eim_omp.h"
#include "atom.h"
#include "comm.h"
#include "force.h"
#include "memory.h"
#include "neighbor.h"
#include "neigh_list.h"
using
namespace
LAMMPS_NS
;
/* ---------------------------------------------------------------------- */
PairEIMOMP
::
PairEIMOMP
(
LAMMPS
*
lmp
)
:
PairEIM
(
lmp
),
ThrOMP
(
lmp
,
PAIR
)
{
respa_enable
=
0
;
}
/* ---------------------------------------------------------------------- */
void
PairEIMOMP
::
compute
(
int
eflag
,
int
vflag
)
{
if
(
eflag
||
vflag
)
{
ev_setup
(
eflag
,
vflag
);
ev_setup_thr
(
this
);
}
else
evflag
=
vflag_fdotr
=
eflag_global
=
eflag_atom
=
0
;
const
int
nall
=
atom
->
nlocal
+
atom
->
nghost
;
const
int
nthreads
=
comm
->
nthreads
;
const
int
inum
=
list
->
inum
;
// grow energy and fp arrays if necessary
// need to be atom->nmax in length
if
(
atom
->
nmax
>
nmax
)
{
memory
->
destroy
(
rho
);
memory
->
destroy
(
fp
);
nmax
=
atom
->
nmax
;
memory
->
create
(
rho
,
nthreads
*
nmax
,
"pair:rho"
);
memory
->
create
(
fp
,
nthreads
*
nmax
,
"pair:fp"
);
}
#if defined(_OPENMP)
#pragma omp parallel default(shared)
#endif
{
int
ifrom
,
ito
,
tid
;
double
**
f
,
*
rho_t
,
*
fp_t
;
f
=
loop_setup_thr
(
atom
->
f
,
ifrom
,
ito
,
tid
,
inum
,
nall
,
nthreads
);
if
(
force
->
newton_pair
)
{
rho_t
=
rho
+
tid
*
nall
;
fp_t
=
fp
+
tid
*
nall
;
}
else
{
rho_t
=
rho
+
tid
*
atom
->
nlocal
;
fp_t
=
fp
+
tid
*
atom
->
nlocal
;
}
if
(
evflag
)
{
if
(
eflag
)
{
if
(
force
->
newton_pair
)
eval
<
1
,
1
,
1
>
(
f
,
rho_t
,
fp_t
,
ifrom
,
ito
,
tid
);
else
eval
<
1
,
1
,
0
>
(
f
,
rho_t
,
fp_t
,
ifrom
,
ito
,
tid
);
}
else
{
if
(
force
->
newton_pair
)
eval
<
1
,
0
,
1
>
(
f
,
rho_t
,
fp_t
,
ifrom
,
ito
,
tid
);
else
eval
<
1
,
0
,
0
>
(
f
,
rho_t
,
fp_t
,
ifrom
,
ito
,
tid
);
}
}
else
{
if
(
force
->
newton_pair
)
eval
<
0
,
0
,
1
>
(
f
,
rho_t
,
fp_t
,
ifrom
,
ito
,
tid
);
else
eval
<
0
,
0
,
0
>
(
f
,
rho_t
,
fp_t
,
ifrom
,
ito
,
tid
);
}
// reduce per thread forces into global force array.
data_reduce_thr
(
&
(
atom
->
f
[
0
][
0
]),
nall
,
nthreads
,
3
,
tid
);
}
// end of omp parallel region
// reduce per thread energy and virial, if requested.
if
(
evflag
)
ev_reduce_thr
(
this
);
if
(
vflag_fdotr
)
virial_fdotr_compute
();
}
template
<
int
EVFLAG
,
int
EFLAG
,
int
NEWTON_PAIR
>
void
PairEIMOMP
::
eval
(
double
**
f
,
double
*
rho_t
,
double
*
fp_t
,
int
iifrom
,
int
iito
,
int
tid
)
{
int
i
,
j
,
ii
,
jj
,
m
,
jnum
,
itype
,
jtype
;
double
xtmp
,
ytmp
,
ztmp
,
delx
,
dely
,
delz
,
evdwl
,
fpair
;
double
rsq
,
r
,
p
,
rhoip
,
rhojp
,
phip
,
phi
,
coul
,
coulp
,
recip
,
psip
;
double
*
coeff
;
int
*
ilist
,
*
jlist
,
*
numneigh
,
**
firstneigh
;
evdwl
=
0.0
;
double
**
x
=
atom
->
x
;
int
*
type
=
atom
->
type
;
int
nlocal
=
atom
->
nlocal
;
int
nall
=
nlocal
+
atom
->
nghost
;
double
fxtmp
,
fytmp
,
fztmp
;
ilist
=
list
->
ilist
;
numneigh
=
list
->
numneigh
;
firstneigh
=
list
->
firstneigh
;
// zero out density and fp
if
(
NEWTON_PAIR
)
{
memset
(
rho_t
,
0
,
nall
*
sizeof
(
double
));
memset
(
fp_t
,
0
,
nall
*
sizeof
(
double
));
}
else
{
memset
(
rho_t
,
0
,
nlocal
*
sizeof
(
double
));
memset
(
fp_t
,
0
,
nlocal
*
sizeof
(
double
));
}
// rho = density at each atom
// loop over neighbors of my atoms
for
(
ii
=
iifrom
;
ii
<
iito
;
ii
++
)
{
i
=
ilist
[
ii
];
xtmp
=
x
[
i
][
0
];
ytmp
=
x
[
i
][
1
];
ztmp
=
x
[
i
][
2
];
itype
=
type
[
i
];
jlist
=
firstneigh
[
i
];
jnum
=
numneigh
[
i
];
for
(
jj
=
0
;
jj
<
jnum
;
jj
++
)
{
j
=
jlist
[
jj
];
j
&=
NEIGHMASK
;
jtype
=
type
[
j
];
delx
=
xtmp
-
x
[
j
][
0
];
dely
=
ytmp
-
x
[
j
][
1
];
delz
=
ztmp
-
x
[
j
][
2
];
rsq
=
delx
*
delx
+
dely
*
dely
+
delz
*
delz
;
if
(
rsq
<
cutforcesq
[
itype
][
jtype
])
{
p
=
sqrt
(
rsq
)
*
rdr
+
1.0
;
m
=
static_cast
<
int
>
(
p
);
m
=
MIN
(
m
,
nr
-
1
);
p
-=
m
;
p
=
MIN
(
p
,
1.0
);
coeff
=
Fij_spline
[
type2Fij
[
itype
][
jtype
]][
m
];
rho_t
[
i
]
+=
((
coeff
[
3
]
*
p
+
coeff
[
4
])
*
p
+
coeff
[
5
])
*
p
+
coeff
[
6
];
if
(
NEWTON_PAIR
||
j
<
nlocal
)
{
coeff
=
Fij_spline
[
type2Fij
[
jtype
][
itype
]][
m
];
rho_t
[
j
]
+=
((
coeff
[
3
]
*
p
+
coeff
[
4
])
*
p
+
coeff
[
5
])
*
p
+
coeff
[
6
];
}
}
}
}
// wait until all threads are done with computation
sync_threads
();
// communicate and sum densities
if
(
NEWTON_PAIR
)
{
// reduce per thread density
data_reduce_thr
(
&
(
rho
[
0
]),
nall
,
comm
->
nthreads
,
1
,
tid
);
// wait until reduction is complete
sync_threads
();
#if defined(_OPENMP)
#pragma omp master
#endif
{
rhofp
=
1
;
comm
->
reverse_comm_pair
(
this
);
}
}
else
{
data_reduce_thr
(
&
(
rho
[
0
]),
nlocal
,
comm
->
nthreads
,
1
,
tid
);
// wait until reduction is complete
sync_threads
();
}
#if defined(_OPENMP)
#pragma omp master
#endif
{
rhofp
=
1
;
comm
->
forward_comm_pair
(
this
);
}
// wait until master is finished communicating
sync_threads
();
for
(
ii
=
iifrom
;
ii
<
iito
;
ii
++
)
{
i
=
ilist
[
ii
];
xtmp
=
x
[
i
][
0
];
ytmp
=
x
[
i
][
1
];
ztmp
=
x
[
i
][
2
];
itype
=
type
[
i
];
jlist
=
firstneigh
[
i
];
jnum
=
numneigh
[
i
];
for
(
jj
=
0
;
jj
<
jnum
;
jj
++
)
{
j
=
jlist
[
jj
];
j
&=
NEIGHMASK
;
jtype
=
type
[
j
];
delx
=
xtmp
-
x
[
j
][
0
];
dely
=
ytmp
-
x
[
j
][
1
];
delz
=
ztmp
-
x
[
j
][
2
];
rsq
=
delx
*
delx
+
dely
*
dely
+
delz
*
delz
;
if
(
rsq
<
cutforcesq
[
itype
][
jtype
])
{
p
=
sqrt
(
rsq
)
*
rdr
+
1.0
;
m
=
static_cast
<
int
>
(
p
);
m
=
MIN
(
m
,
nr
-
1
);
p
-=
m
;
p
=
MIN
(
p
,
1.0
);
coeff
=
Gij_spline
[
type2Gij
[
itype
][
jtype
]][
m
];
fp_t
[
i
]
+=
rho
[
j
]
*
(((
coeff
[
3
]
*
p
+
coeff
[
4
])
*
p
+
coeff
[
5
])
*
p
+
coeff
[
6
]);
if
(
NEWTON_PAIR
||
j
<
nlocal
)
{
fp_t
[
j
]
+=
rho
[
i
]
*
(((
coeff
[
3
]
*
p
+
coeff
[
4
])
*
p
+
coeff
[
5
])
*
p
+
coeff
[
6
]);
}
}
}
}
// wait until all threads are done with computation
sync_threads
();
// communicate and sum modified densities
if
(
NEWTON_PAIR
)
{
// reduce per thread density
data_reduce_thr
(
&
(
fp
[
0
]),
nall
,
comm
->
nthreads
,
1
,
tid
);
// wait until reduction is complete
sync_threads
();
#if defined(_OPENMP)
#pragma omp master
#endif
{
rhofp
=
2
;
comm
->
reverse_comm_pair
(
this
);
}
}
else
{
data_reduce_thr
(
&
(
fp
[
0
]),
nlocal
,
comm
->
nthreads
,
1
,
tid
);
// wait until reduction is complete
sync_threads
();
}
#if defined(_OPENMP)
#pragma omp master
#endif
{
rhofp
=
2
;
comm
->
forward_comm_pair
(
this
);
}
// wait until master is finished communicating
sync_threads
();
for
(
ii
=
iifrom
;
ii
<
iito
;
ii
++
)
{
i
=
ilist
[
ii
];
itype
=
type
[
i
];
if
(
EFLAG
)
{
phi
=
0.5
*
rho
[
i
]
*
fp
[
i
];
if
(
eflag_global
)
eng_vdwl_thr
[
tid
]
+=
phi
;
if
(
eflag_atom
)
eatom_thr
[
tid
][
i
]
+=
phi
;
}
}
// compute forces on each atom
// loop over neighbors of my atoms
for
(
ii
=
iifrom
;
ii
<
iito
;
ii
++
)
{
i
=
ilist
[
ii
];
xtmp
=
x
[
i
][
0
];
ytmp
=
x
[
i
][
1
];
ztmp
=
x
[
i
][
2
];
itype
=
type
[
i
];
fxtmp
=
fytmp
=
fztmp
=
0.0
;
jlist
=
firstneigh
[
i
];
jnum
=
numneigh
[
i
];
for
(
jj
=
0
;
jj
<
jnum
;
jj
++
)
{
j
=
jlist
[
jj
];
j
&=
NEIGHMASK
;
jtype
=
type
[
j
];
delx
=
xtmp
-
x
[
j
][
0
];
dely
=
ytmp
-
x
[
j
][
1
];
delz
=
ztmp
-
x
[
j
][
2
];
rsq
=
delx
*
delx
+
dely
*
dely
+
delz
*
delz
;
if
(
rsq
<
cutforcesq
[
itype
][
jtype
])
{
r
=
sqrt
(
rsq
);
p
=
r
*
rdr
+
1.0
;
m
=
static_cast
<
int
>
(
p
);
m
=
MIN
(
m
,
nr
-
1
);
p
-=
m
;
p
=
MIN
(
p
,
1.0
);
// rhoip = derivative of (density at atom j due to atom i)
// rhojp = derivative of (density at atom i due to atom j)
// phi = pair potential energy
// phip = phi'
coeff
=
Fij_spline
[
type2Fij
[
jtype
][
itype
]][
m
];
rhoip
=
(
coeff
[
0
]
*
p
+
coeff
[
1
])
*
p
+
coeff
[
2
];
coeff
=
Fij_spline
[
type2Fij
[
itype
][
jtype
]][
m
];
rhojp
=
(
coeff
[
0
]
*
p
+
coeff
[
1
])
*
p
+
coeff
[
2
];
coeff
=
phiij_spline
[
type2phiij
[
itype
][
jtype
]][
m
];
phip
=
(
coeff
[
0
]
*
p
+
coeff
[
1
])
*
p
+
coeff
[
2
];
phi
=
((
coeff
[
3
]
*
p
+
coeff
[
4
])
*
p
+
coeff
[
5
])
*
p
+
coeff
[
6
];
coeff
=
Gij_spline
[
type2Gij
[
itype
][
jtype
]][
m
];
coul
=
((
coeff
[
3
]
*
p
+
coeff
[
4
])
*
p
+
coeff
[
5
])
*
p
+
coeff
[
6
];
coulp
=
(
coeff
[
0
]
*
p
+
coeff
[
1
])
*
p
+
coeff
[
2
];
psip
=
phip
+
(
rho
[
i
]
*
rho
[
j
]
-
q0
[
itype
]
*
q0
[
jtype
])
*
coulp
+
fp
[
i
]
*
rhojp
+
fp
[
j
]
*
rhoip
;
recip
=
1.0
/
r
;
fpair
=
-
psip
*
recip
;
fxtmp
+=
delx
*
fpair
;
fytmp
+=
dely
*
fpair
;
fztmp
+=
delz
*
fpair
;
if
(
NEWTON_PAIR
||
j
<
nlocal
)
{
f
[
j
][
0
]
-=
delx
*
fpair
;
f
[
j
][
1
]
-=
dely
*
fpair
;
f
[
j
][
2
]
-=
delz
*
fpair
;
}
if
(
EFLAG
)
evdwl
=
phi
-
q0
[
itype
]
*
q0
[
jtype
]
*
coul
;
if
(
EVFLAG
)
ev_tally_thr
(
this
,
i
,
j
,
nlocal
,
NEWTON_PAIR
,
evdwl
,
0.0
,
fpair
,
delx
,
dely
,
delz
,
tid
);
}
}
f
[
i
][
0
]
+=
fxtmp
;
f
[
i
][
1
]
+=
fytmp
;
f
[
i
][
2
]
+=
fztmp
;
}
}
/* ---------------------------------------------------------------------- */
double
PairEIMOMP
::
memory_usage
()
{
double
bytes
=
memory_usage_thr
();
bytes
+=
PairEIM
::
memory_usage
();
return
bytes
;
}
Event Timeline
Log In to Comment