Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F108685366
pair_lj_charmm_coul_long_omp.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Apr 18, 00:39
Size
40 KB
Mime Type
text/x-c++
Expires
Sun, Apr 20, 00:39 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
25637936
Attached To
rLAMMPS lammps
pair_lj_charmm_coul_long_omp.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Paul Crozier (SNL)
OpenMP parallel version: Axel Kohlmeyer (Temple U)
------------------------------------------------------------------------- */
#include "math.h"
#include "stdio.h"
#include "stdlib.h"
#include "string.h"
#include "pair_lj_charmm_coul_long_omp.h"
#include "atom.h"
#include "comm.h"
#include "force.h"
#include "kspace.h"
#include "update.h"
#include "integrate.h"
#include "respa.h"
#include "neighbor.h"
#include "neigh_list.h"
#include "neigh_request.h"
#include "memory.h"
#include "error.h"
#if defined(_OPENMP)
#include <omp.h>
#endif
using namespace LAMMPS_NS;
#define MIN(a,b) ((a) < (b) ? (a) : (b))
#define MAX(a,b) ((a) > (b) ? (a) : (b))
#define EWALD_F 1.12837917
#define EWALD_P 0.3275911
#define A1 0.254829592
#define A2 -0.284496736
#define A3 1.421413741
#define A4 -1.453152027
#define A5 1.061405429
/* ---------------------------------------------------------------------- */
PairLJCharmmCoulLongOMP::PairLJCharmmCoulLongOMP(LAMMPS *lmp) : PairOMP(lmp)
{
respa_enable = 1;
ftable = NULL;
implicit = 0;
}
/* ---------------------------------------------------------------------- */
PairLJCharmmCoulLongOMP::~PairLJCharmmCoulLongOMP()
{
if (allocated) {
memory->destroy_2d_int_array(setflag);
memory->destroy_2d_double_array(cutsq);
memory->destroy_2d_double_array(epsilon);
memory->destroy_2d_double_array(sigma);
memory->destroy_2d_double_array(eps14);
memory->destroy_2d_double_array(sigma14);
memory->destroy_2d_double_array(lj1);
memory->destroy_2d_double_array(lj2);
memory->destroy_2d_double_array(lj3);
memory->destroy_2d_double_array(lj4);
memory->destroy_2d_double_array(lj14_1);
memory->destroy_2d_double_array(lj14_2);
memory->destroy_2d_double_array(lj14_3);
memory->destroy_2d_double_array(lj14_4);
}
if (ftable) free_tables();
}
/* ---------------------------------------------------------------------- */
void PairLJCharmmCoulLongOMP::compute(int eflag, int vflag)
{
if (eflag || vflag) {
ev_setup(eflag,vflag);
ev_setup_thr(eflag,vflag);
} else evflag = vflag_fdotr = 0;
if (evflag) {
if (eflag) {
if (force->newton_pair) return eval<1,1,1>();
else return eval<1,1,0>();
} else {
if (force->newton_pair) return eval<1,0,1>();
else return eval<1,0,0>();
}
} else {
if (force->newton_pair) return eval<0,0,1>();
else return eval<0,0,0>();
}
}
template <int EVFLAG, int EFLAG, int NEWTON_PAIR>
void PairLJCharmmCoulLongOMP::eval()
{
#if defined(_OPENMP)
#pragma omp parallel default(shared)
#endif
{
int i,j,ii,jj,inum,jnum,itype,jtype,itable,tid;
double qtmp,xtmp,ytmp,ztmp,delx,dely,delz,evdwl,ecoul,fpair;
double fraction,table;
double r,r2inv,r6inv,forcecoul,forcelj,factor_coul,factor_lj;
double grij,expm2,prefactor,t,erfc;
double philj,switch1,switch2;
int *ilist,*jlist,*numneigh,**firstneigh;
double rsq;
evdwl = ecoul = 0.0;
const int nlocal = atom->nlocal;
const int nall = nlocal + atom->nghost;
const int nthreads = comm->nthreads;
double **x = atom->x;
double **f = atom->f;
double *q = atom->q;
int *type = atom->type;
double *special_coul = force->special_coul;
double *special_lj = force->special_lj;
double qqrd2e = force->qqrd2e;
inum = list->inum;
ilist = list->ilist;
numneigh = list->numneigh;
firstneigh = list->firstneigh;
// loop over neighbors of my atoms
int iifrom, iito;
f = loop_setup_thr(f, iifrom, iito, tid, inum, nall, nthreads);
for (ii = iifrom; ii < iito; ++ii) {
i = ilist[ii];
qtmp = q[i];
xtmp = x[i][0];
ytmp = x[i][1];
ztmp = x[i][2];
itype = type[i];
jlist = firstneigh[i];
jnum = numneigh[i];
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
if (j < nall) factor_coul = factor_lj = 1.0;
else {
factor_coul = special_coul[j/nall];
factor_lj = special_lj[j/nall];
j %= nall;
}
delx = xtmp - x[j][0];
dely = ytmp - x[j][1];
delz = ztmp - x[j][2];
rsq = delx*delx + dely*dely + delz*delz;
if (rsq < cut_bothsq) {
r2inv = 1.0/rsq;
if (rsq < cut_coulsq) {
if (!ncoultablebits || rsq <= tabinnersq) {
r = sqrt(rsq);
grij = g_ewald * r;
expm2 = exp(-grij*grij);
t = 1.0 / (1.0 + EWALD_P*grij);
erfc = t * (A1+t*(A2+t*(A3+t*(A4+t*A5)))) * expm2;
prefactor = qqrd2e * qtmp*q[j]/r;
forcecoul = prefactor * (erfc + EWALD_F*grij*expm2);
if (factor_coul < 1.0) forcecoul -= (1.0-factor_coul)*prefactor;
} else {
union_int_float_t rsq_lookup;
rsq_lookup.f = rsq;
itable = rsq_lookup.i & ncoulmask;
itable >>= ncoulshiftbits;
fraction = (rsq_lookup.f - rtable[itable]) * drtable[itable];
table = ftable[itable] + fraction*dftable[itable];
forcecoul = qtmp*q[j] * table;
if (factor_coul < 1.0) {
table = ctable[itable] + fraction*dctable[itable];
prefactor = qtmp*q[j] * table;
forcecoul -= (1.0-factor_coul)*prefactor;
}
}
} else forcecoul = 0.0;
if (rsq < cut_ljsq) {
r6inv = r2inv*r2inv*r2inv;
jtype = type[j];
forcelj = r6inv * (lj1[itype][jtype]*r6inv - lj2[itype][jtype]);
if (rsq > cut_lj_innersq) {
switch1 = (cut_ljsq-rsq) * (cut_ljsq-rsq) *
(cut_ljsq + 2.0*rsq - 3.0*cut_lj_innersq) / denom_lj;
switch2 = 12.0*rsq * (cut_ljsq-rsq) *
(rsq-cut_lj_innersq) / denom_lj;
philj = r6inv * (lj3[itype][jtype]*r6inv - lj4[itype][jtype]);
forcelj = forcelj*switch1 + philj*switch2;
}
} else forcelj = 0.0;
fpair = (forcecoul + factor_lj*forcelj) * r2inv;
f[i][0] += delx*fpair;
f[i][1] += dely*fpair;
f[i][2] += delz*fpair;
if (NEWTON_PAIR || j < nlocal) {
f[j][0] -= delx*fpair;
f[j][1] -= dely*fpair;
f[j][2] -= delz*fpair;
}
if (EFLAG) {
if (rsq < cut_coulsq) {
if (!ncoultablebits || rsq <= tabinnersq)
ecoul = prefactor*erfc;
else {
table = etable[itable] + fraction*detable[itable];
ecoul = qtmp*q[j] * table;
}
if (factor_coul < 1.0) ecoul -= (1.0-factor_coul)*prefactor;
} else ecoul = 0.0;
if (rsq < cut_ljsq) {
evdwl = r6inv*(lj3[itype][jtype]*r6inv-lj4[itype][jtype]);
if (rsq > cut_lj_innersq) {
switch1 = (cut_ljsq-rsq) * (cut_ljsq-rsq) *
(cut_ljsq + 2.0*rsq - 3.0*cut_lj_innersq) / denom_lj;
evdwl *= switch1;
}
evdwl *= factor_lj;
} else evdwl = 0.0;
}
if (EVFLAG) ev_tally_thr(i,j,nlocal,NEWTON_PAIR,
evdwl,ecoul,fpair,delx,dely,delz,tid);
}
}
}
// reduce per thread forces into global force array.
force_reduce_thr(atom->f, nall, nthreads, tid);
}
ev_reduce_thr();
if (vflag_fdotr) virial_compute();
}
/* ---------------------------------------------------------------------- */
void PairLJCharmmCoulLongOMP::compute_inner()
{
if (force->newton_pair) return eval_inner<1>();
else return eval_inner<0>();
}
template <int NEWTON_PAIR>
void PairLJCharmmCoulLongOMP::eval_inner()
{
#if defined(_OPENMP)
#pragma omp parallel default(shared)
#endif
{
int i,j,ii,jj,inum,jnum,itype,jtype,tid;
double qtmp,xtmp,ytmp,ztmp,delx,dely,delz,fpair;
double rsq,r2inv,r6inv,forcecoul,forcelj,factor_coul,factor_lj;
double rsw;
int *ilist,*jlist,*numneigh,**firstneigh;
const int nlocal = atom->nlocal;
const int nall = nlocal + atom->nghost;
const int nthreads = comm->nthreads;
double **x = atom->x;
double **f = atom->f;
double *q = atom->q;
int *type = atom->type;
double *special_coul = force->special_coul;
double *special_lj = force->special_lj;
double qqrd2e = force->qqrd2e;
inum = listinner->inum;
ilist = listinner->ilist;
numneigh = listinner->numneigh;
firstneigh = listinner->firstneigh;
double cut_out_on = cut_respa[0];
double cut_out_off = cut_respa[1];
double cut_out_diff = cut_out_off - cut_out_on;
double cut_out_on_sq = cut_out_on*cut_out_on;
double cut_out_off_sq = cut_out_off*cut_out_off;
// loop over neighbors of my atoms
int iifrom, iito;
f = loop_setup_thr(f, iifrom, iito, tid, inum, nall, nthreads);
for (ii = iifrom; ii < iito; ++ii) {
i = ilist[ii];
qtmp = q[i];
xtmp = x[i][0];
ytmp = x[i][1];
ztmp = x[i][2];
itype = type[i];
jlist = firstneigh[i];
jnum = numneigh[i];
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
if (j < nall) factor_coul = factor_lj = 1.0;
else {
factor_coul = special_coul[j/nall];
factor_lj = special_lj[j/nall];
j %= nall;
}
delx = xtmp - x[j][0];
dely = ytmp - x[j][1];
delz = ztmp - x[j][2];
rsq = delx*delx + dely*dely + delz*delz;
if (rsq < cut_out_off_sq) {
r2inv = 1.0/rsq;
forcecoul = qqrd2e * qtmp*q[j]*sqrt(r2inv);
if (factor_coul < 1.0) forcecoul -= (1.0-factor_coul)*forcecoul;
r6inv = r2inv*r2inv*r2inv;
jtype = type[j];
forcelj = r6inv * (lj1[itype][jtype]*r6inv - lj2[itype][jtype]);
fpair = (forcecoul + factor_lj*forcelj) * r2inv;
if (rsq > cut_out_on_sq) {
rsw = (sqrt(rsq) - cut_out_on)/cut_out_diff;
fpair *= 1.0 + rsw*rsw*(2.0*rsw-3.0);
}
f[i][0] += delx*fpair;
f[i][1] += dely*fpair;
f[i][2] += delz*fpair;
if (NEWTON_PAIR || j < nlocal) {
f[j][0] -= delx*fpair;
f[j][1] -= dely*fpair;
f[j][2] -= delz*fpair;
}
}
}
}
// reduce per thread forces into global force array.
force_reduce_thr(atom->f, nall, nthreads, tid);
}
}
/* ---------------------------------------------------------------------- */
void PairLJCharmmCoulLongOMP::compute_middle()
{
if (force->newton_pair) return eval_middle<1>();
else return eval_middle<0>();
}
template <int NEWTON_PAIR>
void PairLJCharmmCoulLongOMP::eval_middle()
{
#if defined(_OPENMP)
#pragma omp parallel default(shared)
#endif
{
int i,j,ii,jj,inum,jnum,itype,jtype,tid;
double qtmp,xtmp,ytmp,ztmp,delx,dely,delz,fpair;
double rsq,r2inv,r6inv,forcecoul,forcelj,factor_coul,factor_lj;
double philj,switch1,switch2;
double rsw;
int *ilist,*jlist,*numneigh,**firstneigh;
const int nlocal = atom->nlocal;
const int nall = nlocal + atom->nghost;
const int nthreads = comm->nthreads;
double **x = atom->x;
double **f = atom->f;
double *q = atom->q;
int *type = atom->type;
double *special_coul = force->special_coul;
double *special_lj = force->special_lj;
double qqrd2e = force->qqrd2e;
inum = listmiddle->inum;
ilist = listmiddle->ilist;
numneigh = listmiddle->numneigh;
firstneigh = listmiddle->firstneigh;
double cut_in_off = cut_respa[0];
double cut_in_on = cut_respa[1];
double cut_out_on = cut_respa[2];
double cut_out_off = cut_respa[3];
double cut_in_diff = cut_in_on - cut_in_off;
double cut_out_diff = cut_out_off - cut_out_on;
double cut_in_off_sq = cut_in_off*cut_in_off;
double cut_in_on_sq = cut_in_on*cut_in_on;
double cut_out_on_sq = cut_out_on*cut_out_on;
double cut_out_off_sq = cut_out_off*cut_out_off;
// loop over neighbors of my atoms
int iifrom, iito;
f = loop_setup_thr(f, iifrom, iito, tid, inum, nall, nthreads);
for (ii = iifrom; ii < iito; ++ii) {
i = ilist[ii];
qtmp = q[i];
xtmp = x[i][0];
ytmp = x[i][1];
ztmp = x[i][2];
itype = type[i];
jlist = firstneigh[i];
jnum = numneigh[i];
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
if (j < nall) factor_coul = factor_lj = 1.0;
else {
factor_coul = special_coul[j/nall];
factor_lj = special_lj[j/nall];
j %= nall;
}
delx = xtmp - x[j][0];
dely = ytmp - x[j][1];
delz = ztmp - x[j][2];
rsq = delx*delx + dely*dely + delz*delz;
if (rsq < cut_out_off_sq && rsq > cut_in_off_sq) {
r2inv = 1.0/rsq;
forcecoul = qqrd2e * qtmp*q[j]*sqrt(r2inv);
if (factor_coul < 1.0) forcecoul -= (1.0-factor_coul)*forcecoul;
r6inv = r2inv*r2inv*r2inv;
jtype = type[j];
forcelj = r6inv * (lj1[itype][jtype]*r6inv - lj2[itype][jtype]);
if (rsq > cut_lj_innersq) {
switch1 = (cut_ljsq-rsq) * (cut_ljsq-rsq) *
(cut_ljsq + 2.0*rsq - 3.0*cut_lj_innersq) / denom_lj;
switch2 = 12.0*rsq * (cut_ljsq-rsq) *
(rsq-cut_lj_innersq) / denom_lj;
philj = r6inv * (lj3[itype][jtype]*r6inv - lj4[itype][jtype]);
forcelj = forcelj*switch1 + philj*switch2;
}
fpair = (forcecoul + factor_lj*forcelj) * r2inv;
if (rsq < cut_in_on_sq) {
rsw = (sqrt(rsq) - cut_in_off)/cut_in_diff;
fpair *= rsw*rsw*(3.0 - 2.0*rsw);
}
if (rsq > cut_out_on_sq) {
rsw = (sqrt(rsq) - cut_out_on)/cut_out_diff;
fpair *= 1.0 + rsw*rsw*(2.0*rsw - 3.0);
}
f[i][0] += delx*fpair;
f[i][1] += dely*fpair;
f[i][2] += delz*fpair;
if (NEWTON_PAIR || j < nlocal) {
f[j][0] -= delx*fpair;
f[j][1] -= dely*fpair;
f[j][2] -= delz*fpair;
}
}
}
}
// reduce per thread forces into global force array.
force_reduce_thr(atom->f, nall, nthreads, tid);
}
}
/* ---------------------------------------------------------------------- */
void PairLJCharmmCoulLongOMP::compute_outer(int eflag, int vflag)
{
if (eflag || vflag) {
ev_setup(eflag,vflag);
ev_setup_thr(eflag,vflag);
} else evflag = vflag_fdotr = 0;
if (evflag) {
if (eflag) {
if (vflag) {
if (force->newton_pair) return eval_outer<1,1,1,1>();
else return eval_outer<1,1,1,0>();
} else {
if (force->newton_pair) return eval_outer<1,1,0,1>();
else return eval_outer<1,1,0,0>();
}
} else {
if (vflag) {
if (force->newton_pair) return eval_outer<1,0,1,1>();
else return eval_outer<1,0,1,0>();
} else {
if (force->newton_pair) return eval_outer<1,0,0,1>();
else return eval_outer<1,0,0,0>();
}
}
} else {
if (force->newton_pair) return eval_outer<0,0,0,1>();
else return eval_outer<0,0,0,0>();
}
}
template <int EVFLAG, int EFLAG, int VFLAG, int NEWTON_PAIR>
void PairLJCharmmCoulLongOMP::eval_outer()
{
#if defined(_OPENMP)
#pragma omp parallel default(shared)
#endif
{
int i,j,ii,jj,inum,jnum,itype,jtype,itable,tid;
double qtmp,xtmp,ytmp,ztmp,delx,dely,delz,evdwl,ecoul,fpair;
double fraction,table;
double r,r2inv,r6inv,forcecoul,forcelj,factor_coul,factor_lj;
double grij,expm2,prefactor,t,erfc;
double philj,switch1,switch2;
double rsw;
int *ilist,*jlist,*numneigh,**firstneigh;
double rsq;
evdwl = ecoul = 0.0;
const int nlocal = atom->nlocal;
const int nall = nlocal + atom->nghost;
const int nthreads = comm->nthreads;
double **x = atom->x;
double **f = atom->f;
double *q = atom->q;
int *type = atom->type;
double *special_coul = force->special_coul;
double *special_lj = force->special_lj;
double qqrd2e = force->qqrd2e;
inum = listouter->inum;
ilist = listouter->ilist;
numneigh = listouter->numneigh;
firstneigh = listouter->firstneigh;
double cut_in_off = cut_respa[2];
double cut_in_on = cut_respa[3];
double cut_in_diff = cut_in_on - cut_in_off;
double cut_in_off_sq = cut_in_off*cut_in_off;
double cut_in_on_sq = cut_in_on*cut_in_on;
// loop over neighbors of my atoms
int iifrom, iito;
f = loop_setup_thr(f, iifrom, iito, tid, inum, nall, nthreads);
for (ii = iifrom; ii < iito; ++ii) {
i = ilist[ii];
qtmp = q[i];
xtmp = x[i][0];
ytmp = x[i][1];
ztmp = x[i][2];
itype = type[i];
jlist = firstneigh[i];
jnum = numneigh[i];
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
if (j < nall) factor_coul = factor_lj = 1.0;
else {
factor_coul = special_coul[j/nall];
factor_lj = special_lj[j/nall];
j %= nall;
}
delx = xtmp - x[j][0];
dely = ytmp - x[j][1];
delz = ztmp - x[j][2];
rsq = delx*delx + dely*dely + delz*delz;
jtype = type[j];
if (rsq < cut_bothsq) {
r2inv = 1.0/rsq;
if (rsq < cut_coulsq) {
if (!ncoultablebits || rsq <= tabinnersq) {
r = sqrt(rsq);
grij = g_ewald * r;
expm2 = exp(-grij*grij);
t = 1.0 / (1.0 + EWALD_P*grij);
erfc = t * (A1+t*(A2+t*(A3+t*(A4+t*A5)))) * expm2;
prefactor = qqrd2e * qtmp*q[j]/r;
forcecoul = prefactor * (erfc + EWALD_F*grij*expm2 - 1.0);
if (rsq > cut_in_off_sq) {
if (rsq < cut_in_on_sq) {
rsw = (r - cut_in_off)/cut_in_diff;
forcecoul += prefactor*rsw*rsw*(3.0 - 2.0*rsw);
if (factor_coul < 1.0)
forcecoul -=
(1.0-factor_coul)*prefactor*rsw*rsw*(3.0 - 2.0*rsw);
} else {
forcecoul += prefactor;
if (factor_coul < 1.0)
forcecoul -= (1.0-factor_coul)*prefactor;
}
}
} else {
union_int_float_t rsq_lookup;
rsq_lookup.f = rsq;
itable = rsq_lookup.i & ncoulmask;
itable >>= ncoulshiftbits;
fraction = (rsq_lookup.f - rtable[itable]) * drtable[itable];
table = ftable[itable] + fraction*dftable[itable];
forcecoul = qtmp*q[j] * table;
if (factor_coul < 1.0) {
table = ctable[itable] + fraction*dctable[itable];
prefactor = qtmp*q[j] * table;
forcecoul -= (1.0-factor_coul)*prefactor;
}
}
} else forcecoul = 0.0;
if (rsq < cut_ljsq && rsq > cut_in_off_sq) {
r6inv = r2inv*r2inv*r2inv;
forcelj = r6inv * (lj1[itype][jtype]*r6inv - lj2[itype][jtype]);
if (rsq > cut_lj_innersq) {
switch1 = (cut_ljsq-rsq) * (cut_ljsq-rsq) *
(cut_ljsq + 2.0*rsq - 3.0*cut_lj_innersq) / denom_lj;
switch2 = 12.0*rsq * (cut_ljsq-rsq) *
(rsq-cut_lj_innersq) / denom_lj;
philj = r6inv * (lj3[itype][jtype]*r6inv - lj4[itype][jtype]);
forcelj = forcelj*switch1 + philj*switch2;
}
if (rsq < cut_in_on_sq) {
rsw = (sqrt(rsq) - cut_in_off)/cut_in_diff;
forcelj *= rsw*rsw*(3.0 - 2.0*rsw);
}
} else forcelj = 0.0;
fpair = (forcecoul + forcelj) * r2inv;
f[i][0] += delx*fpair;
f[i][1] += dely*fpair;
f[i][2] += delz*fpair;
if (NEWTON_PAIR || j < nlocal) {
f[j][0] -= delx*fpair;
f[j][1] -= dely*fpair;
f[j][2] -= delz*fpair;
}
if (EFLAG) {
if (rsq < cut_coulsq) {
if (!ncoultablebits || rsq <= tabinnersq) {
ecoul = prefactor*erfc;
if (factor_coul < 1.0) ecoul -= (1.0-factor_coul)*prefactor;
} else {
table = etable[itable] + fraction*detable[itable];
ecoul = qtmp*q[j] * table;
if (factor_coul < 1.0) {
table = ptable[itable] + fraction*dptable[itable];
prefactor = qtmp*q[j] * table;
ecoul -= (1.0-factor_coul)*prefactor;
}
}
} else ecoul = 0.0;
if (rsq < cut_ljsq) {
r6inv = r2inv*r2inv*r2inv;
evdwl = r6inv*(lj3[itype][jtype]*r6inv-lj4[itype][jtype]);
if (rsq > cut_lj_innersq) {
switch1 = (cut_ljsq-rsq) * (cut_ljsq-rsq) *
(cut_ljsq + 2.0*rsq - 3.0*cut_lj_innersq) / denom_lj;
evdwl *= switch1;
}
evdwl *= factor_lj;
} else evdwl = 0.0;
}
if (VFLAG) {
if (rsq < cut_coulsq) {
if (!ncoultablebits || rsq <= tabinnersq) {
forcecoul = prefactor * (erfc + EWALD_F*grij*expm2);
if (factor_coul < 1.0) forcecoul -= (1.0-factor_coul)*prefactor;
} else {
table = vtable[itable] + fraction*dvtable[itable];
forcecoul = qtmp*q[j] * table;
if (factor_coul < 1.0) {
table = ptable[itable] + fraction*dptable[itable];
prefactor = qtmp*q[j] * table;
forcecoul -= (1.0-factor_coul)*prefactor;
}
}
} else forcecoul = 0.0;
if (rsq <= cut_in_off_sq) {
r6inv = r2inv*r2inv*r2inv;
forcelj = r6inv * (lj1[itype][jtype]*r6inv - lj2[itype][jtype]);
if (rsq > cut_lj_innersq) {
switch1 = (cut_ljsq-rsq) * (cut_ljsq-rsq) *
(cut_ljsq + 2.0*rsq - 3.0*cut_lj_innersq) / denom_lj;
switch2 = 12.0*rsq * (cut_ljsq-rsq) *
(rsq-cut_lj_innersq) / denom_lj;
philj = r6inv * (lj3[itype][jtype]*r6inv - lj4[itype][jtype]);
forcelj = forcelj*switch1 + philj*switch2;
}
} else if (rsq <= cut_in_on_sq) {
forcelj = r6inv * (lj1[itype][jtype]*r6inv - lj2[itype][jtype]);
if (rsq > cut_lj_innersq) {
switch1 = (cut_ljsq-rsq) * (cut_ljsq-rsq) *
(cut_ljsq + 2.0*rsq - 3.0*cut_lj_innersq) / denom_lj;
switch2 = 12.0*rsq * (cut_ljsq-rsq) *
(rsq-cut_lj_innersq) / denom_lj;
philj = r6inv * (lj3[itype][jtype]*r6inv - lj4[itype][jtype]);
forcelj = forcelj*switch1 + philj*switch2;
}
}
fpair = (forcecoul + factor_lj*forcelj) * r2inv;
}
if (EVFLAG) ev_tally_thr(i,j,nlocal,NEWTON_PAIR,
evdwl,ecoul,fpair,delx,dely,delz,tid);
}
}
}
// reduce per thread forces into global force array.
force_reduce_thr(atom->f, nall, nthreads, tid);
}
// reduce per thread accumulators
ev_reduce_thr();
if (vflag_fdotr) virial_compute();
}
/* ----------------------------------------------------------------------
allocate all arrays
------------------------------------------------------------------------- */
void PairLJCharmmCoulLongOMP::allocate()
{
allocated = 1;
int n = atom->ntypes;
setflag = memory->create_2d_int_array(n+1,n+1,"pair:setflag");
for (int i = 1; i <= n; i++)
for (int j = i; j <= n; j++)
setflag[i][j] = 0;
cutsq = memory->create_2d_double_array(n+1,n+1,"pair:cutsq");
epsilon = memory->create_2d_double_array(n+1,n+1,"pair:epsilon");
sigma = memory->create_2d_double_array(n+1,n+1,"pair:sigma");
eps14 = memory->create_2d_double_array(n+1,n+1,"pair:eps14");
sigma14 = memory->create_2d_double_array(n+1,n+1,"pair:sigma14");
lj1 = memory->create_2d_double_array(n+1,n+1,"pair:lj1");
lj2 = memory->create_2d_double_array(n+1,n+1,"pair:lj2");
lj3 = memory->create_2d_double_array(n+1,n+1,"pair:lj3");
lj4 = memory->create_2d_double_array(n+1,n+1,"pair:lj4");
lj14_1 = memory->create_2d_double_array(n+1,n+1,"pair:lj14_1");
lj14_2 = memory->create_2d_double_array(n+1,n+1,"pair:lj14_2");
lj14_3 = memory->create_2d_double_array(n+1,n+1,"pair:lj14_3");
lj14_4 = memory->create_2d_double_array(n+1,n+1,"pair:lj14_4");
}
/* ----------------------------------------------------------------------
global settings
unlike other pair styles,
there are no individual pair settings that these override
------------------------------------------------------------------------- */
void PairLJCharmmCoulLongOMP::settings(int narg, char **arg)
{
if (narg != 2 && narg != 3) error->all("Illegal pair_style command");
cut_lj_inner = force->numeric(arg[0]);
cut_lj = force->numeric(arg[1]);
if (narg == 2) cut_coul = cut_lj;
else cut_coul = force->numeric(arg[2]);
}
/* ----------------------------------------------------------------------
set coeffs for one or more type pairs
------------------------------------------------------------------------- */
void PairLJCharmmCoulLongOMP::coeff(int narg, char **arg)
{
if (narg != 4 && narg != 6) error->all("Illegal pair_coeff command");
if (!allocated) allocate();
int ilo,ihi,jlo,jhi;
force->bounds(arg[0],atom->ntypes,ilo,ihi);
force->bounds(arg[1],atom->ntypes,jlo,jhi);
double epsilon_one = force->numeric(arg[2]);
double sigma_one = force->numeric(arg[3]);
double eps14_one = epsilon_one;
double sigma14_one = sigma_one;
if (narg == 6) {
eps14_one = force->numeric(arg[4]);
sigma14_one = force->numeric(arg[5]);
}
int count = 0;
for (int i = ilo; i <= ihi; i++) {
for (int j = MAX(jlo,i); j <= jhi; j++) {
epsilon[i][j] = epsilon_one;
sigma[i][j] = sigma_one;
eps14[i][j] = eps14_one;
sigma14[i][j] = sigma14_one;
setflag[i][j] = 1;
count++;
}
}
if (count == 0) error->all("Incorrect args for pair coefficients");
}
/* ----------------------------------------------------------------------
init specific to this pair style
------------------------------------------------------------------------- */
void PairLJCharmmCoulLongOMP::init_style()
{
if (!atom->q_flag)
error->all("Pair style lj/charmm/coul/long requires atom attribute q");
// request regular or rRESPA neighbor lists
int irequest;
if (update->whichflag == 1 && strcmp(update->integrate_style,"respa") == 0) {
int respa = 0;
if (((Respa *) update->integrate)->level_inner >= 0) respa = 1;
if (((Respa *) update->integrate)->level_middle >= 0) respa = 2;
if (respa == 0) irequest = neighbor->request(this);
else if (respa == 1) {
irequest = neighbor->request(this);
neighbor->requests[irequest]->id = 1;
neighbor->requests[irequest]->half = 0;
neighbor->requests[irequest]->respainner = 1;
irequest = neighbor->request(this);
neighbor->requests[irequest]->id = 3;
neighbor->requests[irequest]->half = 0;
neighbor->requests[irequest]->respaouter = 1;
} else {
irequest = neighbor->request(this);
neighbor->requests[irequest]->id = 1;
neighbor->requests[irequest]->half = 0;
neighbor->requests[irequest]->respainner = 1;
irequest = neighbor->request(this);
neighbor->requests[irequest]->id = 2;
neighbor->requests[irequest]->half = 0;
neighbor->requests[irequest]->respamiddle = 1;
irequest = neighbor->request(this);
neighbor->requests[irequest]->id = 3;
neighbor->requests[irequest]->half = 0;
neighbor->requests[irequest]->respaouter = 1;
}
} else irequest = neighbor->request(this);
// require cut_lj_inner < cut_lj
if (cut_lj_inner >= cut_lj)
error->all("Pair inner cutoff >= Pair outer cutoff");
cut_lj_innersq = cut_lj_inner * cut_lj_inner;
cut_ljsq = cut_lj * cut_lj;
cut_coulsq = cut_coul * cut_coul;
cut_bothsq = MAX(cut_ljsq,cut_coulsq);
denom_lj = (cut_ljsq-cut_lj_innersq) * (cut_ljsq-cut_lj_innersq) *
(cut_ljsq-cut_lj_innersq);
// set & error check interior rRESPA cutoffs
if (strcmp(update->integrate_style,"respa") == 0 &&
((Respa *) update->integrate)->level_inner >= 0) {
cut_respa = ((Respa *) update->integrate)->cutoff;
if (MIN(cut_lj,cut_coul) < cut_respa[3])
error->all("Pair cutoff < Respa interior cutoff");
if (cut_lj_inner < cut_respa[1])
error->all("Pair inner cutoff < Respa interior cutoff");
} else cut_respa = NULL;
// insure use of KSpace long-range solver, set g_ewald
if (force->kspace == NULL)
error->all("Pair style is incompatible with KSpace style");
g_ewald = force->kspace->g_ewald;
// setup force tables
if (ncoultablebits) init_tables();
}
/* ----------------------------------------------------------------------
neighbor callback to inform pair style of neighbor list to use
regular or rRESPA
------------------------------------------------------------------------- */
void PairLJCharmmCoulLongOMP::init_list(int id, NeighList *ptr)
{
if (id == 0) list = ptr;
else if (id == 1) listinner = ptr;
else if (id == 2) listmiddle = ptr;
else if (id == 3) listouter = ptr;
}
/* ----------------------------------------------------------------------
init for one type pair i,j and corresponding j,i
------------------------------------------------------------------------- */
double PairLJCharmmCoulLongOMP::init_one(int i, int j)
{
// always mix arithmetically
if (setflag[i][j] == 0) {
epsilon[i][j] = sqrt(epsilon[i][i]*epsilon[j][j]);
sigma[i][j] = 0.5 * (sigma[i][i] + sigma[j][j]);
eps14[i][j] = sqrt(eps14[i][i]*eps14[j][j]);
sigma14[i][j] = 0.5 * (sigma14[i][i] + sigma14[j][j]);
}
double cut = MAX(cut_lj,cut_coul);
lj1[i][j] = 48.0 * epsilon[i][j] * pow(sigma[i][j],12.0);
lj2[i][j] = 24.0 * epsilon[i][j] * pow(sigma[i][j],6.0);
lj3[i][j] = 4.0 * epsilon[i][j] * pow(sigma[i][j],12.0);
lj4[i][j] = 4.0 * epsilon[i][j] * pow(sigma[i][j],6.0);
lj14_1[i][j] = 48.0 * eps14[i][j] * pow(sigma14[i][j],12.0);
lj14_2[i][j] = 24.0 * eps14[i][j] * pow(sigma14[i][j],6.0);
lj14_3[i][j] = 4.0 * eps14[i][j] * pow(sigma14[i][j],12.0);
lj14_4[i][j] = 4.0 * eps14[i][j] * pow(sigma14[i][j],6.0);
lj1[j][i] = lj1[i][j];
lj2[j][i] = lj2[i][j];
lj3[j][i] = lj3[i][j];
lj4[j][i] = lj4[i][j];
lj14_1[j][i] = lj14_1[i][j];
lj14_2[j][i] = lj14_2[i][j];
lj14_3[j][i] = lj14_3[i][j];
lj14_4[j][i] = lj14_4[i][j];
return cut;
}
/* ----------------------------------------------------------------------
setup force tables used in compute routines
------------------------------------------------------------------------- */
void PairLJCharmmCoulLongOMP::init_tables()
{
int masklo,maskhi;
double r,grij,expm2,derfc,rsw;
double qqrd2e = force->qqrd2e;
tabinnersq = tabinner*tabinner;
init_bitmap(tabinner,cut_coul,ncoultablebits,
masklo,maskhi,ncoulmask,ncoulshiftbits);
int ntable = 1;
for (int i = 0; i < ncoultablebits; i++) ntable *= 2;
// linear lookup tables of length N = 2^ncoultablebits
// stored value = value at lower edge of bin
// d values = delta from lower edge to upper edge of bin
if (ftable) free_tables();
rtable = (double *) memory->smalloc(ntable*sizeof(double),"pair:rtable");
ftable = (double *) memory->smalloc(ntable*sizeof(double),"pair:ftable");
ctable = (double *) memory->smalloc(ntable*sizeof(double),"pair:ctable");
etable = (double *) memory->smalloc(ntable*sizeof(double),"pair:etable");
drtable = (double *) memory->smalloc(ntable*sizeof(double),"pair:drtable");
dftable = (double *) memory->smalloc(ntable*sizeof(double),"pair:dftable");
dctable = (double *) memory->smalloc(ntable*sizeof(double),"pair:dctable");
detable = (double *) memory->smalloc(ntable*sizeof(double),"pair:detable");
if (cut_respa == NULL) {
vtable = ptable = dvtable = dptable = NULL;
} else {
vtable = (double *) memory->smalloc(ntable*sizeof(double),"pair:vtable");
ptable = (double *) memory->smalloc(ntable*sizeof(double),"pair:ptable");
dvtable = (double *) memory->smalloc(ntable*sizeof(double),"pair:dvtable");
dptable = (double *) memory->smalloc(ntable*sizeof(double),"pair:dptable");
}
union_int_float_t rsq_lookup;
union_int_float_t minrsq_lookup;
int itablemin;
minrsq_lookup.i = 0 << ncoulshiftbits;
minrsq_lookup.i |= maskhi;
for (int i = 0; i < ntable; i++) {
rsq_lookup.i = i << ncoulshiftbits;
rsq_lookup.i |= masklo;
if (rsq_lookup.f < tabinnersq) {
rsq_lookup.i = i << ncoulshiftbits;
rsq_lookup.i |= maskhi;
}
r = sqrtf(rsq_lookup.f);
grij = g_ewald * r;
expm2 = exp(-grij*grij);
derfc = erfc(grij);
if (cut_respa == NULL) {
rtable[i] = rsq_lookup.f;
ftable[i] = qqrd2e/r * (derfc + EWALD_F*grij*expm2);
ctable[i] = qqrd2e/r;
etable[i] = qqrd2e/r * derfc;
} else {
rtable[i] = rsq_lookup.f;
ftable[i] = qqrd2e/r * (derfc + EWALD_F*grij*expm2 - 1.0);
ctable[i] = 0.0;
etable[i] = qqrd2e/r * derfc;
ptable[i] = qqrd2e/r;
vtable[i] = qqrd2e/r * (derfc + EWALD_F*grij*expm2);
if (rsq_lookup.f > cut_respa[2]*cut_respa[2]) {
if (rsq_lookup.f < cut_respa[3]*cut_respa[3]) {
rsw = (r - cut_respa[2])/(cut_respa[3] - cut_respa[2]);
ftable[i] += qqrd2e/r * rsw*rsw*(3.0 - 2.0*rsw);
ctable[i] = qqrd2e/r * rsw*rsw*(3.0 - 2.0*rsw);
} else {
ftable[i] = qqrd2e/r * (derfc + EWALD_F*grij*expm2);
ctable[i] = qqrd2e/r;
}
}
}
minrsq_lookup.f = MIN(minrsq_lookup.f,rsq_lookup.f);
}
tabinnersq = minrsq_lookup.f;
int ntablem1 = ntable - 1;
for (int i = 0; i < ntablem1; i++) {
drtable[i] = 1.0/(rtable[i+1] - rtable[i]);
dftable[i] = ftable[i+1] - ftable[i];
dctable[i] = ctable[i+1] - ctable[i];
detable[i] = etable[i+1] - etable[i];
}
if (cut_respa) {
for (int i = 0; i < ntablem1; i++) {
dvtable[i] = vtable[i+1] - vtable[i];
dptable[i] = ptable[i+1] - ptable[i];
}
}
// get the delta values for the last table entries
// tables are connected periodically between 0 and ntablem1
drtable[ntablem1] = 1.0/(rtable[0] - rtable[ntablem1]);
dftable[ntablem1] = ftable[0] - ftable[ntablem1];
dctable[ntablem1] = ctable[0] - ctable[ntablem1];
detable[ntablem1] = etable[0] - etable[ntablem1];
if (cut_respa) {
dvtable[ntablem1] = vtable[0] - vtable[ntablem1];
dptable[ntablem1] = ptable[0] - ptable[ntablem1];
}
// get the correct delta values at itablemax
// smallest r is in bin itablemin
// largest r is in bin itablemax, which is itablemin-1,
// or ntablem1 if itablemin=0
// deltas at itablemax only needed if corresponding rsq < cut*cut
// if so, compute deltas between rsq and cut*cut
double f_tmp,c_tmp,e_tmp,p_tmp,v_tmp;
itablemin = minrsq_lookup.i & ncoulmask;
itablemin >>= ncoulshiftbits;
int itablemax = itablemin - 1;
if (itablemin == 0) itablemax = ntablem1;
rsq_lookup.i = itablemax << ncoulshiftbits;
rsq_lookup.i |= maskhi;
if (rsq_lookup.f < cut_coulsq) {
rsq_lookup.f = cut_coulsq;
r = sqrtf(rsq_lookup.f);
grij = g_ewald * r;
expm2 = exp(-grij*grij);
derfc = erfc(grij);
if (cut_respa == NULL) {
f_tmp = qqrd2e/r * (derfc + EWALD_F*grij*expm2);
c_tmp = qqrd2e/r;
e_tmp = qqrd2e/r * derfc;
} else {
f_tmp = qqrd2e/r * (derfc + EWALD_F*grij*expm2 - 1.0);
c_tmp = 0.0;
e_tmp = qqrd2e/r * derfc;
p_tmp = qqrd2e/r;
v_tmp = qqrd2e/r * (derfc + EWALD_F*grij*expm2);
if (rsq_lookup.f > cut_respa[2]*cut_respa[2]) {
if (rsq_lookup.f < cut_respa[3]*cut_respa[3]) {
rsw = (r - cut_respa[2])/(cut_respa[3] - cut_respa[2]);
f_tmp += qqrd2e/r * rsw*rsw*(3.0 - 2.0*rsw);
c_tmp = qqrd2e/r * rsw*rsw*(3.0 - 2.0*rsw);
} else {
f_tmp = qqrd2e/r * (derfc + EWALD_F*grij*expm2);
c_tmp = qqrd2e/r;
}
}
}
drtable[itablemax] = 1.0/(rsq_lookup.f - rtable[itablemax]);
dftable[itablemax] = f_tmp - ftable[itablemax];
dctable[itablemax] = c_tmp - ctable[itablemax];
detable[itablemax] = e_tmp - etable[itablemax];
if (cut_respa) {
dvtable[itablemax] = v_tmp - vtable[itablemax];
dptable[itablemax] = p_tmp - ptable[itablemax];
}
}
}
/* ----------------------------------------------------------------------
proc 0 writes to restart file
------------------------------------------------------------------------- */
void PairLJCharmmCoulLongOMP::write_restart(FILE *fp)
{
write_restart_settings(fp);
int i,j;
for (i = 1; i <= atom->ntypes; i++)
for (j = i; j <= atom->ntypes; j++) {
fwrite(&setflag[i][j],sizeof(int),1,fp);
if (setflag[i][j]) {
fwrite(&epsilon[i][j],sizeof(double),1,fp);
fwrite(&sigma[i][j],sizeof(double),1,fp);
fwrite(&eps14[i][j],sizeof(double),1,fp);
fwrite(&sigma14[i][j],sizeof(double),1,fp);
}
}
}
/* ----------------------------------------------------------------------
proc 0 reads from restart file, bcasts
------------------------------------------------------------------------- */
void PairLJCharmmCoulLongOMP::read_restart(FILE *fp)
{
read_restart_settings(fp);
allocate();
int i,j;
int me = comm->me;
for (i = 1; i <= atom->ntypes; i++)
for (j = i; j <= atom->ntypes; j++) {
if (me == 0) fread(&setflag[i][j],sizeof(int),1,fp);
MPI_Bcast(&setflag[i][j],1,MPI_INT,0,world);
if (setflag[i][j]) {
if (me == 0) {
fread(&epsilon[i][j],sizeof(double),1,fp);
fread(&sigma[i][j],sizeof(double),1,fp);
fread(&eps14[i][j],sizeof(double),1,fp);
fread(&sigma14[i][j],sizeof(double),1,fp);
}
MPI_Bcast(&epsilon[i][j],1,MPI_DOUBLE,0,world);
MPI_Bcast(&sigma[i][j],1,MPI_DOUBLE,0,world);
MPI_Bcast(&eps14[i][j],1,MPI_DOUBLE,0,world);
MPI_Bcast(&sigma14[i][j],1,MPI_DOUBLE,0,world);
}
}
}
/* ----------------------------------------------------------------------
proc 0 writes to restart file
------------------------------------------------------------------------- */
void PairLJCharmmCoulLongOMP::write_restart_settings(FILE *fp)
{
fwrite(&cut_lj_inner,sizeof(double),1,fp);
fwrite(&cut_lj,sizeof(double),1,fp);
fwrite(&cut_coul,sizeof(double),1,fp);
fwrite(&offset_flag,sizeof(int),1,fp);
fwrite(&mix_flag,sizeof(int),1,fp);
}
/* ----------------------------------------------------------------------
proc 0 reads from restart file, bcasts
------------------------------------------------------------------------- */
void PairLJCharmmCoulLongOMP::read_restart_settings(FILE *fp)
{
if (comm->me == 0) {
fread(&cut_lj_inner,sizeof(double),1,fp);
fread(&cut_lj,sizeof(double),1,fp);
fread(&cut_coul,sizeof(double),1,fp);
fread(&offset_flag,sizeof(int),1,fp);
fread(&mix_flag,sizeof(int),1,fp);
}
MPI_Bcast(&cut_lj_inner,1,MPI_DOUBLE,0,world);
MPI_Bcast(&cut_lj,1,MPI_DOUBLE,0,world);
MPI_Bcast(&cut_coul,1,MPI_DOUBLE,0,world);
MPI_Bcast(&offset_flag,1,MPI_INT,0,world);
MPI_Bcast(&mix_flag,1,MPI_INT,0,world);
}
/* ----------------------------------------------------------------------
free memory for tables used in pair computations
------------------------------------------------------------------------- */
void PairLJCharmmCoulLongOMP::free_tables()
{
memory->sfree(rtable);
memory->sfree(drtable);
memory->sfree(ftable);
memory->sfree(dftable);
memory->sfree(ctable);
memory->sfree(dctable);
memory->sfree(etable);
memory->sfree(detable);
memory->sfree(vtable);
memory->sfree(dvtable);
memory->sfree(ptable);
memory->sfree(dptable);
}
/* ---------------------------------------------------------------------- */
double PairLJCharmmCoulLongOMP::single(int i, int j, int itype, int jtype,
double rsq,
double factor_coul, double factor_lj,
double &fforce)
{
double r2inv,r6inv,r,grij,expm2,t,erfc,prefactor;
double switch1,switch2,fraction,table,forcecoul,forcelj,phicoul,philj;
int itable;
r2inv = 1.0/rsq;
if (rsq < cut_coulsq) {
if (!ncoultablebits || rsq <= tabinnersq) {
r = sqrt(rsq);
grij = g_ewald * r;
expm2 = exp(-grij*grij);
t = 1.0 / (1.0 + EWALD_P*grij);
erfc = t * (A1+t*(A2+t*(A3+t*(A4+t*A5)))) * expm2;
prefactor = force->qqrd2e * atom->q[i]*atom->q[j]/r;
forcecoul = prefactor * (erfc + EWALD_F*grij*expm2);
if (factor_coul < 1.0) forcecoul -= (1.0-factor_coul)*prefactor;
} else {
union_int_float_t rsq_lookup;
rsq_lookup.f = rsq;
itable = rsq_lookup.i & ncoulmask;
itable >>= ncoulshiftbits;
fraction = (rsq_lookup.f - rtable[itable]) * drtable[itable];
table = ftable[itable] + fraction*dftable[itable];
forcecoul = atom->q[i]*atom->q[j] * table;
if (factor_coul < 1.0) {
table = ctable[itable] + fraction*dctable[itable];
prefactor = atom->q[i]*atom->q[j] * table;
forcecoul -= (1.0-factor_coul)*prefactor;
}
}
} else forcecoul = 0.0;
if (rsq < cut_ljsq) {
r6inv = r2inv*r2inv*r2inv;
forcelj = r6inv * (lj1[itype][jtype]*r6inv - lj2[itype][jtype]);
if (rsq > cut_lj_innersq) {
switch1 = (cut_ljsq-rsq) * (cut_ljsq-rsq) *
(cut_ljsq + 2.0*rsq - 3.0*cut_lj_innersq) / denom_lj;
switch2 = 12.0*rsq * (cut_ljsq-rsq) *
(rsq-cut_lj_innersq) / denom_lj;
philj = r6inv * (lj3[itype][jtype]*r6inv - lj4[itype][jtype]);
forcelj = forcelj*switch1 + philj*switch2;
}
} else forcelj = 0.0;
fforce = (forcecoul + factor_lj*forcelj) * r2inv;
double eng = 0.0;
if (rsq < cut_coulsq) {
if (!ncoultablebits || rsq <= tabinnersq)
phicoul = prefactor*erfc;
else {
table = etable[itable] + fraction*detable[itable];
phicoul = atom->q[i]*atom->q[j] * table;
}
if (factor_coul < 1.0) phicoul -= (1.0-factor_coul)*prefactor;
eng += phicoul;
}
if (rsq < cut_ljsq) {
philj = r6inv*(lj3[itype][jtype]*r6inv-lj4[itype][jtype]);
if (rsq > cut_lj_innersq) {
switch1 = (cut_ljsq-rsq) * (cut_ljsq-rsq) *
(cut_ljsq + 2.0*rsq - 3.0*cut_lj_innersq) / denom_lj;
philj *= switch1;
}
eng += factor_lj*philj;
}
return eng;
}
/* ---------------------------------------------------------------------- */
void *PairLJCharmmCoulLongOMP::extract(char *str)
{
if (strcmp(str,"lj14_1") == 0) return (void *) lj14_1;
else if (strcmp(str,"lj14_2") == 0) return (void *) lj14_2;
else if (strcmp(str,"lj14_3") == 0) return (void *) lj14_3;
else if (strcmp(str,"lj14_4") == 0) return (void *) lj14_4;
else if (strcmp(str,"implicit") == 0) return (void *) &implicit;
else if (strcmp(str,"cut_coul") == 0) return (void *) &cut_coul;
return NULL;
}
/* ---------------------------------------------------------------------- */
double PairLJCharmmCoulLongOMP::memory_usage()
{
const int n=atom->ntypes;
double bytes = PairOMP::memory_usage();
bytes += 9*((n+1)*(n+1) * sizeof(double) + (n+1)*sizeof(double *));
bytes += 1*((n+1)*(n+1) * sizeof(int) + (n+1)*sizeof(int *));
return bytes;
}
Event Timeline
Log In to Comment