Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90415224
reaxc_multi_body.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Nov 1, 11:41
Size
12 KB
Mime Type
text/x-c
Expires
Sun, Nov 3, 11:41 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
21981162
Attached To
rLAMMPS lammps
reaxc_multi_body.cpp
View Options
/*----------------------------------------------------------------------
PuReMD - Purdue ReaxFF Molecular Dynamics Program
Copyright (2010) Purdue University
Hasan Metin Aktulga, hmaktulga@lbl.gov
Joseph Fogarty, jcfogart@mail.usf.edu
Sagar Pandit, pandit@usf.edu
Ananth Y Grama, ayg@cs.purdue.edu
Please cite the related publication:
H. M. Aktulga, J. C. Fogarty, S. A. Pandit, A. Y. Grama,
"Parallel Reactive Molecular Dynamics: Numerical Methods and
Algorithmic Techniques", Parallel Computing, in press.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details:
<http://www.gnu.org/licenses/>.
----------------------------------------------------------------------*/
#include "pair_reax_c.h"
#if defined(PURE_REAX)
#include "multi_body.h"
#include "bond_orders.h"
#include "list.h"
#include "vector.h"
#elif defined(LAMMPS_REAX)
#include "reaxc_multi_body.h"
#include "reaxc_bond_orders.h"
#include "reaxc_list.h"
#include "reaxc_vector.h"
#endif
void
Atom_Energy
(
reax_system
*
system
,
control_params
*
control
,
simulation_data
*
data
,
storage
*
workspace
,
reax_list
**
lists
,
output_controls
*
out_control
)
{
int
i
,
j
,
pj
,
type_i
,
type_j
;
real
Delta_lpcorr
,
dfvl
;
real
e_lp
,
expvd2
,
inv_expvd2
,
dElp
,
CElp
,
DlpVi
;
real
e_lph
,
Di
,
vov3
,
deahu2dbo
,
deahu2dsbo
;
real
e_ov
,
CEover1
,
CEover2
,
CEover3
,
CEover4
;
real
exp_ovun1
,
exp_ovun2
,
sum_ovun1
,
sum_ovun2
;
real
exp_ovun2n
,
exp_ovun6
,
exp_ovun8
;
real
inv_exp_ovun1
,
inv_exp_ovun2
,
inv_exp_ovun2n
,
inv_exp_ovun8
;
real
e_un
,
CEunder1
,
CEunder2
,
CEunder3
,
CEunder4
;
real
p_lp1
,
p_lp2
,
p_lp3
;
real
p_ovun2
,
p_ovun3
,
p_ovun4
,
p_ovun5
,
p_ovun6
,
p_ovun7
,
p_ovun8
;
real
eng_tmp
,
f_tmp
;
single_body_parameters
*
sbp_i
,
*
sbp_j
;
two_body_parameters
*
twbp
;
bond_data
*
pbond
;
bond_order_data
*
bo_ij
;
reax_list
*
bonds
=
(
*
lists
)
+
BONDS
;
/* Initialize parameters */
p_lp1
=
system
->
reax_param
.
gp
.
l
[
15
];
p_lp3
=
system
->
reax_param
.
gp
.
l
[
5
];
p_ovun3
=
system
->
reax_param
.
gp
.
l
[
32
];
p_ovun4
=
system
->
reax_param
.
gp
.
l
[
31
];
p_ovun6
=
system
->
reax_param
.
gp
.
l
[
6
];
p_ovun7
=
system
->
reax_param
.
gp
.
l
[
8
];
p_ovun8
=
system
->
reax_param
.
gp
.
l
[
9
];
for
(
i
=
0
;
i
<
system
->
n
;
++
i
)
{
/* set the parameter pointer */
type_i
=
system
->
my_atoms
[
i
].
type
;
sbp_i
=
&
(
system
->
reax_param
.
sbp
[
type_i
]);
/* lone-pair Energy */
p_lp2
=
sbp_i
->
p_lp2
;
expvd2
=
exp
(
-
75
*
workspace
->
Delta_lp
[
i
]
);
inv_expvd2
=
1.
/
(
1.
+
expvd2
);
/* calculate the energy */
data
->
my_en
.
e_lp
+=
e_lp
=
p_lp2
*
workspace
->
Delta_lp
[
i
]
*
inv_expvd2
;
dElp
=
p_lp2
*
inv_expvd2
+
75
*
p_lp2
*
workspace
->
Delta_lp
[
i
]
*
expvd2
*
SQR
(
inv_expvd2
);
CElp
=
dElp
*
workspace
->
dDelta_lp
[
i
];
workspace
->
CdDelta
[
i
]
+=
CElp
;
// lp - 1st term
/* tally into per-atom energy */
if
(
system
->
pair_ptr
->
evflag
)
system
->
pair_ptr
->
ev_tally
(
i
,
i
,
system
->
n
,
1
,
e_lp
,
0.0
,
0.0
,
0.0
,
0.0
,
0.0
);
#ifdef TEST_ENERGY
// fprintf( out_control->elp, "%24.15e%24.15e%24.15e%24.15e\n",
// p_lp2, workspace->Delta_lp_temp[i], expvd2, dElp );
// fprintf( out_control->elp, "%6d%24.15e%24.15e%24.15e\n",
fprintf
(
out_control
->
elp
,
"%6d%12.4f%12.4f%12.4f
\n
"
,
system
->
my_atoms
[
i
].
orig_id
,
workspace
->
nlp
[
i
],
e_lp
,
data
->
my_en
.
e_lp
);
#endif
#ifdef TEST_FORCES
Add_dDelta
(
system
,
lists
,
i
,
CElp
,
workspace
->
f_lp
);
// lp - 1st term
#endif
/* correction for C2 */
if
(
p_lp3
>
0.001
&&
!
strcmp
(
system
->
reax_param
.
sbp
[
type_i
].
name
,
"C"
)
)
for
(
pj
=
Start_Index
(
i
,
bonds
);
pj
<
End_Index
(
i
,
bonds
);
++
pj
)
{
j
=
bonds
->
select
.
bond_list
[
pj
].
nbr
;
type_j
=
system
->
my_atoms
[
j
].
type
;
if
(
!
strcmp
(
system
->
reax_param
.
sbp
[
type_j
].
name
,
"C"
)
)
{
twbp
=
&
(
system
->
reax_param
.
tbp
[
type_i
][
type_j
]);
bo_ij
=
&
(
bonds
->
select
.
bond_list
[
pj
].
bo_data
);
Di
=
workspace
->
Delta
[
i
];
vov3
=
bo_ij
->
BO
-
Di
-
0.040
*
pow
(
Di
,
4.
);
if
(
vov3
>
3.
)
{
data
->
my_en
.
e_lp
+=
e_lph
=
p_lp3
*
SQR
(
vov3
-
3.0
);
deahu2dbo
=
2.
*
p_lp3
*
(
vov3
-
3.
);
deahu2dsbo
=
2.
*
p_lp3
*
(
vov3
-
3.
)
*
(
-
1.
-
0.16
*
pow
(
Di
,
3.
));
bo_ij
->
Cdbo
+=
deahu2dbo
;
workspace
->
CdDelta
[
i
]
+=
deahu2dsbo
;
/* tally into per-atom energy */
if
(
system
->
pair_ptr
->
evflag
)
system
->
pair_ptr
->
ev_tally
(
i
,
j
,
system
->
n
,
1
,
e_lph
,
0.0
,
0.0
,
0.0
,
0.0
,
0.0
);
#ifdef TEST_ENERGY
fprintf
(
out_control
->
elp
,
"C2cor%6d%6d%12.6f%12.6f%12.6f
\n
"
,
system
->
my_atoms
[
i
].
orig_id
,
system
->
my_atoms
[
j
].
orig_id
,
e_lph
,
deahu2dbo
,
deahu2dsbo
);
#endif
#ifdef TEST_FORCES
Add_dBO
(
system
,
lists
,
i
,
pj
,
deahu2dbo
,
workspace
->
f_lp
);
Add_dDelta
(
system
,
lists
,
i
,
deahu2dsbo
,
workspace
->
f_lp
);
#endif
}
}
}
}
for
(
i
=
0
;
i
<
system
->
n
;
++
i
)
{
type_i
=
system
->
my_atoms
[
i
].
type
;
sbp_i
=
&
(
system
->
reax_param
.
sbp
[
type_i
]);
/* over-coordination energy */
if
(
sbp_i
->
mass
>
21.0
)
dfvl
=
0.0
;
else
dfvl
=
1.0
;
// only for 1st-row elements
p_ovun2
=
sbp_i
->
p_ovun2
;
sum_ovun1
=
sum_ovun2
=
0
;
for
(
pj
=
Start_Index
(
i
,
bonds
);
pj
<
End_Index
(
i
,
bonds
);
++
pj
)
{
j
=
bonds
->
select
.
bond_list
[
pj
].
nbr
;
type_j
=
system
->
my_atoms
[
j
].
type
;
bo_ij
=
&
(
bonds
->
select
.
bond_list
[
pj
].
bo_data
);
sbp_j
=
&
(
system
->
reax_param
.
sbp
[
type_j
]);
twbp
=
&
(
system
->
reax_param
.
tbp
[
type_i
][
type_j
]);
sum_ovun1
+=
twbp
->
p_ovun1
*
twbp
->
De_s
*
bo_ij
->
BO
;
sum_ovun2
+=
(
workspace
->
Delta
[
j
]
-
dfvl
*
workspace
->
Delta_lp_temp
[
j
])
*
(
bo_ij
->
BO_pi
+
bo_ij
->
BO_pi2
);
/*fprintf( stdout, "%4d%4d%12.6f%12.6f%12.6f\n",
i+1, j+1,
dfvl * workspace->Delta_lp_temp[j],
sbp_j->nlp_opt,
workspace->nlp_temp[j] );*/
}
exp_ovun1
=
p_ovun3
*
exp
(
p_ovun4
*
sum_ovun2
);
inv_exp_ovun1
=
1.0
/
(
1
+
exp_ovun1
);
Delta_lpcorr
=
workspace
->
Delta
[
i
]
-
(
dfvl
*
workspace
->
Delta_lp_temp
[
i
])
*
inv_exp_ovun1
;
exp_ovun2
=
exp
(
p_ovun2
*
Delta_lpcorr
);
inv_exp_ovun2
=
1.0
/
(
1.0
+
exp_ovun2
);
DlpVi
=
1.0
/
(
Delta_lpcorr
+
sbp_i
->
valency
+
1e-8
);
CEover1
=
Delta_lpcorr
*
DlpVi
*
inv_exp_ovun2
;
data
->
my_en
.
e_ov
+=
e_ov
=
sum_ovun1
*
CEover1
;
CEover2
=
sum_ovun1
*
DlpVi
*
inv_exp_ovun2
*
(
1.0
-
Delta_lpcorr
*
(
DlpVi
+
p_ovun2
*
exp_ovun2
*
inv_exp_ovun2
));
CEover3
=
CEover2
*
(
1.0
-
dfvl
*
workspace
->
dDelta_lp
[
i
]
*
inv_exp_ovun1
);
CEover4
=
CEover2
*
(
dfvl
*
workspace
->
Delta_lp_temp
[
i
])
*
p_ovun4
*
exp_ovun1
*
SQR
(
inv_exp_ovun1
);
/* under-coordination potential */
p_ovun2
=
sbp_i
->
p_ovun2
;
p_ovun5
=
sbp_i
->
p_ovun5
;
exp_ovun2n
=
1.0
/
exp_ovun2
;
exp_ovun6
=
exp
(
p_ovun6
*
Delta_lpcorr
);
exp_ovun8
=
p_ovun7
*
exp
(
p_ovun8
*
sum_ovun2
);
inv_exp_ovun2n
=
1.0
/
(
1.0
+
exp_ovun2n
);
inv_exp_ovun8
=
1.0
/
(
1.0
+
exp_ovun8
);
data
->
my_en
.
e_un
+=
e_un
=
-
p_ovun5
*
(
1.0
-
exp_ovun6
)
*
inv_exp_ovun2n
*
inv_exp_ovun8
;
CEunder1
=
inv_exp_ovun2n
*
(
p_ovun5
*
p_ovun6
*
exp_ovun6
*
inv_exp_ovun8
+
p_ovun2
*
e_un
*
exp_ovun2n
);
CEunder2
=
-
e_un
*
p_ovun8
*
exp_ovun8
*
inv_exp_ovun8
;
CEunder3
=
CEunder1
*
(
1.0
-
dfvl
*
workspace
->
dDelta_lp
[
i
]
*
inv_exp_ovun1
);
CEunder4
=
CEunder1
*
(
dfvl
*
workspace
->
Delta_lp_temp
[
i
])
*
p_ovun4
*
exp_ovun1
*
SQR
(
inv_exp_ovun1
)
+
CEunder2
;
/* tally into per-atom energy */
if
(
system
->
pair_ptr
->
evflag
)
{
eng_tmp
=
e_ov
+
e_un
;
f_tmp
=
CEover3
+
CEunder3
;
system
->
pair_ptr
->
ev_tally
(
i
,
i
,
system
->
n
,
1
,
eng_tmp
,
0.0
,
0.0
,
0.0
,
0.0
,
0.0
);
}
/* forces */
workspace
->
CdDelta
[
i
]
+=
CEover3
;
// OvCoor - 2nd term
workspace
->
CdDelta
[
i
]
+=
CEunder3
;
// UnCoor - 1st term
#ifdef TEST_FORCES
Add_dDelta
(
system
,
lists
,
i
,
CEover3
,
workspace
->
f_ov
);
// OvCoor 2nd
Add_dDelta
(
system
,
lists
,
i
,
CEunder3
,
workspace
->
f_un
);
// UnCoor 1st
#endif
for
(
pj
=
Start_Index
(
i
,
bonds
);
pj
<
End_Index
(
i
,
bonds
);
++
pj
)
{
pbond
=
&
(
bonds
->
select
.
bond_list
[
pj
]);
j
=
pbond
->
nbr
;
bo_ij
=
&
(
pbond
->
bo_data
);
twbp
=
&
(
system
->
reax_param
.
tbp
[
system
->
my_atoms
[
i
].
type
]
[
system
->
my_atoms
[
pbond
->
nbr
].
type
]);
bo_ij
->
Cdbo
+=
CEover1
*
twbp
->
p_ovun1
*
twbp
->
De_s
;
// OvCoor-1st
workspace
->
CdDelta
[
j
]
+=
CEover4
*
(
1.0
-
dfvl
*
workspace
->
dDelta_lp
[
j
])
*
(
bo_ij
->
BO_pi
+
bo_ij
->
BO_pi2
);
// OvCoor-3a
bo_ij
->
Cdbopi
+=
CEover4
*
(
workspace
->
Delta
[
j
]
-
dfvl
*
workspace
->
Delta_lp_temp
[
j
]);
// OvCoor-3b
bo_ij
->
Cdbopi2
+=
CEover4
*
(
workspace
->
Delta
[
j
]
-
dfvl
*
workspace
->
Delta_lp_temp
[
j
]);
// OvCoor-3b
workspace
->
CdDelta
[
j
]
+=
CEunder4
*
(
1.0
-
dfvl
*
workspace
->
dDelta_lp
[
j
])
*
(
bo_ij
->
BO_pi
+
bo_ij
->
BO_pi2
);
// UnCoor - 2a
bo_ij
->
Cdbopi
+=
CEunder4
*
(
workspace
->
Delta
[
j
]
-
dfvl
*
workspace
->
Delta_lp_temp
[
j
]);
// UnCoor-2b
bo_ij
->
Cdbopi2
+=
CEunder4
*
(
workspace
->
Delta
[
j
]
-
dfvl
*
workspace
->
Delta_lp_temp
[
j
]);
// UnCoor-2b
#ifdef TEST_ENERGY
/* fprintf( out_control->eov, "%6d%12.6f\n",
workspace->reverse_map[j],
// CEover1 * twbp->p_ovun1 * twbp->De_s, CEover3,
CEover4 * (1.0 - workspace->dDelta_lp[j]) *
(bo_ij->BO_pi + bo_ij->BO_pi2)
*/
// /*CEover4 * (workspace->Delta[j]-workspace->Delta_lp[j])*/);
// fprintf( out_control->eov, "%6d%12.6f\n",
// fprintf( out_control->eov, "%6d%24.15e\n",
// system->my_atoms[j].orig_id,
// CEover1 * twbp->p_ovun1 * twbp->De_s, CEover3,
// CEover4 * (1.0 - workspace->dDelta_lp[j]) *
// (bo_ij->BO_pi + bo_ij->BO_pi2)
// /*CEover4 * (workspace->Delta[j]-workspace->Delta_lp[j])*/);
// CEunder4 * (1.0 - workspace->dDelta_lp[j]) *
// (bo_ij->BO_pi + bo_ij->BO_pi2),
// CEunder4 * (workspace->Delta[j] - workspace->Delta_lp[j]) );
#endif
#ifdef TEST_FORCES
Add_dBO
(
system
,
lists
,
i
,
pj
,
CEover1
*
twbp
->
p_ovun1
*
twbp
->
De_s
,
workspace
->
f_ov
);
// OvCoor - 1st term
Add_dDelta
(
system
,
lists
,
j
,
CEover4
*
(
1.0
-
dfvl
*
workspace
->
dDelta_lp
[
j
])
*
(
bo_ij
->
BO_pi
+
bo_ij
->
BO_pi2
),
workspace
->
f_ov
);
// OvCoor - 3a
Add_dBOpinpi2
(
system
,
lists
,
i
,
pj
,
CEover4
*
(
workspace
->
Delta
[
j
]
-
dfvl
*
workspace
->
Delta_lp_temp
[
j
]),
CEover4
*
(
workspace
->
Delta
[
j
]
-
dfvl
*
workspace
->
Delta_lp_temp
[
j
]),
workspace
->
f_ov
,
workspace
->
f_ov
);
// OvCoor - 3b
Add_dDelta
(
system
,
lists
,
j
,
CEunder4
*
(
1.0
-
dfvl
*
workspace
->
dDelta_lp
[
j
])
*
(
bo_ij
->
BO_pi
+
bo_ij
->
BO_pi2
),
workspace
->
f_un
);
// UnCoor - 2a
Add_dBOpinpi2
(
system
,
lists
,
i
,
pj
,
CEunder4
*
(
workspace
->
Delta
[
j
]
-
dfvl
*
workspace
->
Delta_lp_temp
[
j
]),
CEunder4
*
(
workspace
->
Delta
[
j
]
-
dfvl
*
workspace
->
Delta_lp_temp
[
j
]),
workspace
->
f_un
,
workspace
->
f_un
);
// UnCoor - 2b
#endif
}
#ifdef TEST_ENERGY
//fprintf( out_control->elp, "%6d%24.15e%24.15e%24.15e\n",
//fprintf( out_control->elp, "%6d%12.4f%12.4f%12.4f\n",
// system->my_atoms[i].orig_id, workspace->nlp[i],
// e_lp, data->my_en.e_lp );
//fprintf( out_control->eov, "%6d%24.15e%24.15e\n",
fprintf
(
out_control
->
eov
,
"%6d%12.4f%12.4f
\n
"
,
system
->
my_atoms
[
i
].
orig_id
,
e_ov
,
data
->
my_en
.
e_ov
+
data
->
my_en
.
e_un
);
//fprintf( out_control->eun, "%6d%24.15e%24.15e\n",
fprintf
(
out_control
->
eun
,
"%6d%12.4f%12.4f
\n
"
,
system
->
my_atoms
[
i
].
orig_id
,
e_un
,
data
->
my_en
.
e_ov
+
data
->
my_en
.
e_un
);
#endif
}
}
Event Timeline
Log In to Comment