Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91478035
smd_material_models.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Mon, Nov 11, 12:46
Size
14 KB
Mime Type
text/x-c
Expires
Wed, Nov 13, 12:46 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22247305
Attached To
rLAMMPS lammps
smd_material_models.cpp
View Options
/* ----------------------------------------------------------------------
*
* *** Smooth Mach Dynamics ***
*
* This file is part of the USER-SMD package for LAMMPS.
* Copyright (2014) Georg C. Ganzenmueller, georg.ganzenmueller@emi.fhg.de
* Fraunhofer Ernst-Mach Institute for High-Speed Dynamics, EMI,
* Eckerstrasse 4, D-79104 Freiburg i.Br, Germany.
*
* ----------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include <iostream>
#include "math_special.h"
#include <stdio.h>
#include <Eigen/Eigen>
using
namespace
LAMMPS_NS
::
MathSpecial
;
using
namespace
std
;
using
namespace
Eigen
;
#define MIN(A,B) ((A) < (B) ? (A) : (B))
#define MAX(A,B) ((A) > (B) ? (A) : (B))
/* ----------------------------------------------------------------------
linear EOS for use with linear elasticity
input: initial pressure pInitial, isotropic part of the strain rate d, time-step dt
output: final pressure pFinal, pressure rate p_rate
------------------------------------------------------------------------- */
void
LinearEOS
(
double
lambda
,
double
pInitial
,
double
d
,
double
dt
,
double
&
pFinal
,
double
&
p_rate
)
{
/*
* pressure rate
*/
p_rate
=
lambda
*
d
;
pFinal
=
pInitial
+
dt
*
p_rate
;
// increment pressure using pressure rate
//cout << "hurz" << endl;
}
/* ----------------------------------------------------------------------
shock EOS
input:
current density rho
reference density rho0
current energy density e
reference energy density e0
reference speed of sound c0
shock Hugoniot parameter S
Grueneisen parameter Gamma
initial pressure pInitial
time step dt
output:
pressure rate p_rate
final pressure pFinal
------------------------------------------------------------------------- */
void
ShockEOS
(
double
rho
,
double
rho0
,
double
e
,
double
e0
,
double
c0
,
double
S
,
double
Gamma
,
double
pInitial
,
double
dt
,
double
&
pFinal
,
double
&
p_rate
)
{
double
mu
=
rho
/
rho0
-
1.0
;
double
pH
=
rho0
*
square
(
c0
)
*
mu
*
(
1.0
+
mu
)
/
square
(
1.0
-
(
S
-
1.0
)
*
mu
);
pFinal
=
(
pH
+
rho
*
Gamma
*
(
e
-
e0
));
//printf("shock EOS: rho = %g, rho0 = %g, Gamma=%f, c0=%f, S=%f, e=%f, e0=%f\n", rho, rho0, Gamma, c0, S, e, e0);
//printf("pFinal = %f\n", pFinal);
p_rate
=
(
pFinal
-
pInitial
)
/
dt
;
}
/* ----------------------------------------------------------------------
polynomial EOS
input:
current density rho
reference density rho0
coefficients 0 .. 6
initial pressure pInitial
time step dt
output:
pressure rate p_rate
final pressure pFinal
------------------------------------------------------------------------- */
void
polynomialEOS
(
double
rho
,
double
rho0
,
double
e
,
double
C0
,
double
C1
,
double
C2
,
double
C3
,
double
C4
,
double
C5
,
double
C6
,
double
pInitial
,
double
dt
,
double
&
pFinal
,
double
&
p_rate
)
{
double
mu
=
rho
/
rho0
-
1.0
;
if
(
mu
>
0.0
)
{
pFinal
=
C0
+
C1
*
mu
+
C2
*
mu
*
mu
+
C3
*
mu
*
mu
*
mu
;
// + (C4 + C5 * mu + C6 * mu * mu) * e;
}
else
{
pFinal
=
C0
+
C1
*
mu
+
C3
*
mu
*
mu
*
mu
;
// + (C4 + C5 * mu) * e;
}
pFinal
=
-
pFinal
;
// we want the mean stress, not the pressure.
//printf("pFinal = %f\n", pFinal);
p_rate
=
(
pFinal
-
pInitial
)
/
dt
;
}
/* ----------------------------------------------------------------------
Tait EOS based on current density vs. reference density.
input: (1) reference sound speed
(2) equilibrium mass density
(3) current mass density
output:(1) pressure
(2) current speed of sound
------------------------------------------------------------------------- */
void
TaitEOS_density
(
const
double
exponent
,
const
double
c0_reference
,
const
double
rho_reference
,
const
double
rho_current
,
double
&
pressure
,
double
&
sound_speed
)
{
double
B
=
rho_reference
*
c0_reference
*
c0_reference
/
exponent
;
double
tmp
=
pow
(
rho_current
/
rho_reference
,
exponent
);
pressure
=
B
*
(
tmp
-
1.0
);
double
bulk_modulus
=
B
*
tmp
*
exponent
;
// computed as rho * d(pressure)/d(rho)
sound_speed
=
sqrt
(
bulk_modulus
/
rho_current
);
// if (fabs(pressure) > 0.01) {
// printf("tmp = %f, press=%f, K=%f\n", tmp, pressure, bulk_modulus);
// }
}
/* ----------------------------------------------------------------------
perfect gas EOS
input: gamma -- adiabatic index (ratio of specific heats)
J -- determinant of deformation gradient
volume0 -- reference configuration volume of particle
energy -- energy of particle
pInitial -- initial pressure of the particle
d -- isotropic part of the strain rate tensor,
dt -- time-step size
output: final pressure pFinal, pressure rate p_rate
------------------------------------------------------------------------- */
void
PerfectGasEOS
(
const
double
gamma
,
const
double
vol
,
const
double
mass
,
const
double
energy
,
double
&
pFinal
,
double
&
c0
)
{
/*
* perfect gas EOS is p = (gamma - 1) rho e
*/
if
(
energy
>
0.0
)
{
pFinal
=
(
1.0
-
gamma
)
*
energy
/
vol
;
//printf("gamma = %f, vol%f, e=%g ==> p=%g\n", gamma, vol, energy, *pFinal__/1.0e-9);
c0
=
sqrt
((
gamma
-
1.0
)
*
energy
/
mass
);
}
else
{
pFinal
=
c0
=
0.0
;
}
}
/* ----------------------------------------------------------------------
linear strength model for use with linear elasticity
input: lambda, mu : Lame parameters
input: sigmaInitial_dev, d_dev: initial stress deviator, deviatoric part of the strain rate tensor
input: dt: time-step
output: sigmaFinal_dev, sigmaFinal_dev_rate__: final stress deviator and its rate.
------------------------------------------------------------------------- */
void
LinearStrength
(
const
double
mu
,
const
Matrix3d
sigmaInitial_dev
,
const
Matrix3d
d_dev
,
const
double
dt
,
Matrix3d
&
sigmaFinal_dev__
,
Matrix3d
&
sigma_dev_rate__
)
{
/*
* deviatoric rate of unrotated stress
*/
sigma_dev_rate__
=
2.0
*
mu
*
d_dev
;
/*
* elastic update to the deviatoric stress
*/
sigmaFinal_dev__
=
sigmaInitial_dev
+
dt
*
sigma_dev_rate__
;
}
/* ----------------------------------------------------------------------
linear strength model for use with linear elasticity
input: lambda, mu : Lame parameters
input: F: deformation gradient
output: total stress tensor, deviator + pressure
------------------------------------------------------------------------- */
//void PairTlsph::LinearStrengthDefgrad(double lambda, double mu, Matrix3d F, Matrix3d *T) {
// Matrix3d E, PK2, eye, sigma, S, tau;
//
// eye.setIdentity();
//
// E = 0.5 * (F * F.transpose() - eye); // strain measure E = 0.5 * (B - I) = 0.5 * (F * F^T - I)
// tau = lambda * E.trace() * eye + 2.0 * mu * E; // Kirchhoff stress, work conjugate to above strain
// sigma = tau / F.determinant(); // convert Kirchhoff stress to Cauchy stress
//
////printf("l=%f, mu=%f, sigma xy = %f\n", lambda, mu, sigma(0,1));
//
//// E = 0.5 * (F.transpose() * F - eye); // Green-Lagrange Strain E = 0.5 * (C - I)
//// S = lambda * E.trace() * eye + 2.0 * mu * Deviator(E); // PK2 stress
//// tau = F * S * F.transpose(); // convert PK2 to Kirchhoff stress
//// sigma = tau / F.determinant();
//
// //*T = sigma;
//
// /*
// * neo-hookean model due to Bonet
// */
//// lambda = mu = 100.0;
//// // left Cauchy-Green Tensor, b = F.F^T
// double J = F.determinant();
// double logJ = log(J);
// Matrix3d b;
// b = F * F.transpose();
//
// sigma = (mu / J) * (b - eye) + (lambda / J) * logJ * eye;
// *T = sigma;
//}
/* ----------------------------------------------------------------------
linear strength model for use with linear elasticity
input: lambda, mu : Lame parameters
input: sigmaInitial_dev, d_dev: initial stress deviator, deviatoric part of the strain rate tensor
input: dt: time-step
output: sigmaFinal_dev, sigmaFinal_dev_rate__: final stress deviator and its rate.
------------------------------------------------------------------------- */
void
LinearPlasticStrength
(
const
double
G
,
const
double
yieldStress
,
const
Matrix3d
sigmaInitial_dev
,
const
Matrix3d
d_dev
,
const
double
dt
,
Matrix3d
&
sigmaFinal_dev__
,
Matrix3d
&
sigma_dev_rate__
,
double
&
plastic_strain_increment
)
{
Matrix3d
sigmaTrial_dev
,
dev_rate
;
double
J2
;
/*
* deviatoric rate of unrotated stress
*/
dev_rate
=
2.0
*
G
*
d_dev
;
/*
* perform a trial elastic update to the deviatoric stress
*/
sigmaTrial_dev
=
sigmaInitial_dev
+
dt
*
dev_rate
;
// increment stress deviator using deviatoric rate
/*
* check yield condition
*/
J2
=
sqrt
(
3.
/
2.
)
*
sigmaTrial_dev
.
norm
();
if
(
J2
<
yieldStress
)
{
/*
* no yielding has occured.
* final deviatoric stress is trial deviatoric stress
*/
sigma_dev_rate__
=
dev_rate
;
sigmaFinal_dev__
=
sigmaTrial_dev
;
plastic_strain_increment
=
0.0
;
//printf("no yield\n");
}
else
{
//printf("yiedl\n");
/*
* yielding has occured
*/
plastic_strain_increment
=
(
J2
-
yieldStress
)
/
(
3.0
*
G
);
/*
* new deviatoric stress:
* obtain by scaling the trial stress deviator
*/
sigmaFinal_dev__
=
(
yieldStress
/
J2
)
*
sigmaTrial_dev
;
/*
* new deviatoric stress rate
*/
sigma_dev_rate__
=
sigmaFinal_dev__
-
sigmaInitial_dev
;
//printf("yielding has occured.\n");
}
}
/* ----------------------------------------------------------------------
Johnson Cook Material Strength model
input:
G : shear modulus
cp : heat capacity
espec : energy / mass
A : initial yield stress under quasi-static / room temperature conditions
B : proportionality factor for plastic strain dependency
a : exponent for plastic strain dpendency
C : proportionality factor for logarithmic plastic strain rate dependency
epdot0 : dimensionality factor for plastic strain rate dependency
T : current temperature
T0 : reference (room) temperature
Tmelt : melting temperature
input: sigmaInitial_dev, d_dev: initial stress deviator, deviatoric part of the strain rate tensor
input: dt: time-step
output: sigmaFinal_dev, sigmaFinal_dev_rate__: final stress deviator and its rate.
------------------------------------------------------------------------- */
void
JohnsonCookStrength
(
const
double
G
,
const
double
cp
,
const
double
espec
,
const
double
A
,
const
double
B
,
const
double
a
,
const
double
C
,
const
double
epdot0
,
const
double
T0
,
const
double
Tmelt
,
const
double
M
,
const
double
dt
,
const
double
ep
,
const
double
epdot
,
const
Matrix3d
sigmaInitial_dev
,
const
Matrix3d
d_dev
,
Matrix3d
&
sigmaFinal_dev__
,
Matrix3d
&
sigma_dev_rate__
,
double
&
plastic_strain_increment
)
{
Matrix3d
sigmaTrial_dev
,
dev_rate
;
double
J2
,
yieldStress
;
double
deltaT
=
espec
/
cp
;
double
TH
=
deltaT
/
(
Tmelt
-
T0
);
TH
=
MAX
(
TH
,
0.0
);
double
epdot_ratio
=
epdot
/
epdot0
;
epdot_ratio
=
MAX
(
epdot_ratio
,
1.0
);
//printf("current temperature delta is %f, TH=%f\n", deltaT, TH);
yieldStress
=
(
A
+
B
*
pow
(
ep
,
a
))
*
(
1.0
+
C
*
log
(
epdot_ratio
));
// * (1.0 - pow(TH, M));
/*
* deviatoric rate of unrotated stress
*/
dev_rate
=
2.0
*
G
*
d_dev
;
/*
* perform a trial elastic update to the deviatoric stress
*/
sigmaTrial_dev
=
sigmaInitial_dev
+
dt
*
dev_rate
;
// increment stress deviator using deviatoric rate
/*
* check yield condition
*/
J2
=
sqrt
(
3.
/
2.
)
*
sigmaTrial_dev
.
norm
();
if
(
J2
<
yieldStress
)
{
/*
* no yielding has occured.
* final deviatoric stress is trial deviatoric stress
*/
sigma_dev_rate__
=
dev_rate
;
sigmaFinal_dev__
=
sigmaTrial_dev
;
plastic_strain_increment
=
0.0
;
//printf("no yield\n");
}
else
{
//printf("yiedl\n");
/*
* yielding has occured
*/
plastic_strain_increment
=
(
J2
-
yieldStress
)
/
(
3.0
*
G
);
/*
* new deviatoric stress:
* obtain by scaling the trial stress deviator
*/
sigmaFinal_dev__
=
(
yieldStress
/
J2
)
*
sigmaTrial_dev
;
/*
* new deviatoric stress rate
*/
sigma_dev_rate__
=
sigmaFinal_dev__
-
sigmaInitial_dev
;
//printf("yielding has occured.\n");
}
}
/* ----------------------------------------------------------------------
isotropic maximum strain damage model
input:
current strain
maximum value of allowed principal strain
output:
return value is true if any eigenvalue of the current strain exceeds the allowed principal strain
------------------------------------------------------------------------- */
bool
IsotropicMaxStrainDamage
(
const
Matrix3d
E
,
const
double
maxStrain
)
{
/*
* compute Eigenvalues of strain matrix
*/
SelfAdjointEigenSolver
<
Matrix3d
>
es
;
es
.
compute
(
E
);
// compute eigenvalue and eigenvectors of strain
double
max_eigenvalue
=
es
.
eigenvalues
().
maxCoeff
();
if
(
max_eigenvalue
>
maxStrain
)
{
return
true
;
}
else
{
return
false
;
}
}
/* ----------------------------------------------------------------------
isotropic maximum stress damage model
input:
current stress
maximum value of allowed principal stress
output:
return value is true if any eigenvalue of the current stress exceeds the allowed principal stress
------------------------------------------------------------------------- */
bool
IsotropicMaxStressDamage
(
const
Matrix3d
S
,
const
double
maxStress
)
{
/*
* compute Eigenvalues of strain matrix
*/
SelfAdjointEigenSolver
<
Matrix3d
>
es
;
es
.
compute
(
S
);
// compute eigenvalue and eigenvectors of strain
double
max_eigenvalue
=
es
.
eigenvalues
().
maxCoeff
();
if
(
max_eigenvalue
>
maxStress
)
{
return
true
;
}
else
{
return
false
;
}
}
/* ----------------------------------------------------------------------
Johnson-Cook failure model
input:
output:
------------------------------------------------------------------------- */
double
JohnsonCookFailureStrain
(
const
double
p
,
const
Matrix3d
Sdev
,
const
double
d1
,
const
double
d2
,
const
double
d3
,
const
double
d4
,
const
double
epdot0
,
const
double
epdot
)
{
double
vm
=
sqrt
(
3.
/
2.
)
*
Sdev
.
norm
();
// von-Mises equivalent stress
if
(
vm
<
0.0
)
{
cout
<<
"this is sdev "
<<
endl
<<
Sdev
<<
endl
;
printf
(
"vm=%f < 0.0, surely must be an error
\n
"
,
vm
);
exit
(
1
);
}
// determine stress triaxiality
double
triax
=
p
/
(
vm
+
0.01
*
fabs
(
p
));
// have softening in denominator to avoid divison by zero
if
(
triax
<
0.0
)
{
triax
=
0.0
;
}
else
if
(
triax
>
3.0
)
{
triax
=
3.0
;
}
// Johnson-Cook failure strain, dependence on stress triaxiality
double
jc_failure_strain
=
d1
+
d2
*
exp
(
d3
*
triax
);
// include strain rate dependency if parameter d4 is defined and current plastic strain rate exceeds reference strain rate
if
(
d4
>
0.0
)
{
//
if
(
epdot
>
epdot0
)
{
double
epdot_ratio
=
epdot
/
epdot0
;
jc_failure_strain
*=
(
1.0
+
d4
*
log
(
epdot_ratio
));
//printf("epsdot=%f, epsdot0=%f, factor = %f\n", epdot, epdot0, (1.0 + d4 * log(epdot_ratio)));
//exit(1);
}
}
return
jc_failure_strain
;
}
Event Timeline
Log In to Comment