Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F108734929
angle_cosine.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Apr 18, 05:26
Size
6 KB
Mime Type
text/x-c
Expires
Sun, Apr 20, 05:26 (2 d)
Engine
blob
Format
Raw Data
Handle
25592392
Attached To
rLAMMPS lammps
angle_cosine.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
www.cs.sandia.gov/~sjplimp/lammps.html
Steve Plimpton, sjplimp@sandia.gov, Sandia National Laboratories
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "math.h"
#include "stdlib.h"
#include "angle_cosine.h"
#include "atom.h"
#include "neighbor.h"
#include "domain.h"
#include "comm.h"
#include "force.h"
#include "memory.h"
#include "error.h"
#define SMALL 0.001
/* ----------------------------------------------------------------------
free all arrays
------------------------------------------------------------------------- */
AngleCosine::~AngleCosine()
{
if (allocated) {
memory->sfree(setflag);
memory->sfree(k);
}
}
/* ---------------------------------------------------------------------- */
void AngleCosine::compute(int eflag, int vflag)
{
int i1,i2,i3,n,type,factor;
double delx1,dely1,delz1,delx2,dely2,delz2,rfactor;
double rsq1,rsq2,r1,r2,c,a,a11,a12,a22,vx1,vx2,vy1,vy2,vz1,vz2;
energy = 0.0;
if (vflag) for (n = 0; n < 6; n++) virial[n] = 0.0;
double **x = atom->x;
double **f = atom->f;
int **anglelist = neighbor->anglelist;
int nanglelist = neighbor->nanglelist;
int nlocal = atom->nlocal;
int newton_bond = force->newton_bond;
for (n = 0; n < nanglelist; n++) {
i1 = anglelist[n][0];
i2 = anglelist[n][1];
i3 = anglelist[n][2];
type = anglelist[n][3];
if (newton_bond) factor = 3;
else {
factor = 0;
if (i1 < nlocal) factor++;
if (i2 < nlocal) factor++;
if (i3 < nlocal) factor++;
}
rfactor = factor/3.0;
// 1st bond
delx1 = x[i1][0] - x[i2][0];
dely1 = x[i1][1] - x[i2][1];
delz1 = x[i1][2] - x[i2][2];
domain->minimum_image(&delx1,&dely1,&delz1);
rsq1 = delx1*delx1 + dely1*dely1 + delz1*delz1;
r1 = sqrt(rsq1);
// 2nd bond
delx2 = x[i3][0] - x[i2][0];
dely2 = x[i3][1] - x[i2][1];
delz2 = x[i3][2] - x[i2][2];
domain->minimum_image(&delx2,&dely2,&delz2);
rsq2 = delx2*delx2 + dely2*dely2 + delz2*delz2;
r2 = sqrt(rsq2);
// c = cosine of angle
c = delx1*delx2 + dely1*dely2 + delz1*delz2;
c /= r1*r2;
if (c > 1.0) c = 1.0;
if (c < -1.0) c = -1.0;
// force & energy
if (eflag) energy += rfactor * k[type]*(1.0+c);
a = -k[type];
a11 = a*c / rsq1;
a12 = -a / (r1*r2);
a22 = a*c / rsq2;
vx1 = a11*delx1 + a12*delx2;
vx2 = a22*delx2 + a12*delx1;
vy1 = a11*dely1 + a12*dely2;
vy2 = a22*dely2 + a12*dely1;
vz1 = a11*delz1 + a12*delz2;
vz2 = a22*delz2 + a12*delz1;
// apply force to each of 3 atoms
if (newton_bond || i1 < nlocal) {
f[i1][0] -= vx1;
f[i1][1] -= vy1;
f[i1][2] -= vz1;
}
if (newton_bond || i2 < nlocal) {
f[i2][0] += vx1 + vx2;
f[i2][1] += vy1 + vy2;
f[i2][2] += vz1 + vz2;
}
if (newton_bond || i3 < nlocal) {
f[i3][0] -= vx2;
f[i3][1] -= vy2;
f[i3][2] -= vz2;
}
// virial contribution
if (vflag) {
virial[0] -= rfactor * (delx1*vx1 + delx2*vx2);
virial[1] -= rfactor * (dely1*vy1 + dely2*vy2);
virial[2] -= rfactor * (delz1*vz1 + delz2*vz2);
virial[3] -= rfactor * (delx1*vy1 + delx2*vy2);
virial[4] -= rfactor * (delx1*vz1 + delx2*vz2);
virial[5] -= rfactor * (dely1*vz1 + dely2*vz2);
}
}
}
/* ---------------------------------------------------------------------- */
void AngleCosine::allocate()
{
allocated = 1;
int n = atom->nangletypes;
k = (double *) memory->smalloc((n+1)*sizeof(double),"angle:k");
setflag = (int *) memory->smalloc((n+1)*sizeof(int),"angle:setflag");
for (int i = 1; i <= n; i++) setflag[i] = 0;
}
/* ----------------------------------------------------------------------
set coeffs for one type
------------------------------------------------------------------------- */
void AngleCosine::coeff(int which, int narg, char **arg)
{
if (which != 0) error->all("Invalid coeffs for this angle style");
if (narg != 2) error->all("Incorrect args for angle coefficients");
if (!allocated) allocate();
int ilo,ihi;
force->bounds(arg[0],atom->nangletypes,ilo,ihi);
double k_one = atof(arg[1]);
int count = 0;
for (int i = ilo; i <= ihi; i++) {
k[i] = k_one;
setflag[i] = 1;
count++;
}
if (count == 0) error->all("Incorrect args for angle coefficients");
}
/* ---------------------------------------------------------------------- */
double AngleCosine::equilibrium_angle(int i)
{
return PI;
}
/* ----------------------------------------------------------------------
proc 0 writes out coeffs to restart file
------------------------------------------------------------------------- */
void AngleCosine::write_restart(FILE *fp)
{
fwrite(&k[1],sizeof(double),atom->nangletypes,fp);
}
/* ----------------------------------------------------------------------
proc 0 reads coeffs from restart file, bcasts them
------------------------------------------------------------------------- */
void AngleCosine::read_restart(FILE *fp)
{
allocate();
if (comm->me == 0) fread(&k[1],sizeof(double),atom->nangletypes,fp);
MPI_Bcast(&k[1],atom->nangletypes,MPI_DOUBLE,0,world);
for (int i = 1; i <= atom->nangletypes; i++) setflag[i] = 1;
}
/* ---------------------------------------------------------------------- */
double AngleCosine::single(int type, int i1, int i2, int i3, double rfactor)
{
double **x = atom->x;
double delx1 = x[i1][0] - x[i2][0];
double dely1 = x[i1][1] - x[i2][1];
double delz1 = x[i1][2] - x[i2][2];
domain->minimum_image(&delx1,&dely1,&delz1);
double r1 = sqrt(delx1*delx1 + dely1*dely1 + delz1*delz1);
double delx2 = x[i3][0] - x[i2][0];
double dely2 = x[i3][1] - x[i2][1];
double delz2 = x[i3][2] - x[i2][2];
domain->minimum_image(&delx2,&dely2,&delz2);
double r2 = sqrt(delx2*delx2 + dely2*dely2 + delz2*delz2);
double c = delx1*delx2 + dely1*dely2 + delz1*delz2;
c /= r1*r2;
if (c > 1.0) c = 1.0;
if (c < -1.0) c = -1.0;
return (rfactor * k[type]*(1.0+c));
}
Event Timeline
Log In to Comment