Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91125224
dihedral_helix.html
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Nov 8, 04:17
Size
3 KB
Mime Type
text/html
Expires
Sun, Nov 10, 04:17 (2 d)
Engine
blob
Format
Raw Data
Handle
22201357
Attached To
rLAMMPS lammps
dihedral_helix.html
View Options
<HTML>
<CENTER><A HREF = "http://lammps.sandia.gov">LAMMPS WWW Site</A> - <A HREF = "Manual.html">LAMMPS Documentation</A> - <A HREF = "Section_commands.html#comm">LAMMPS Commands</A>
</CENTER>
<HR>
<H3>dihedral_style helix command
</H3>
<H3>dihedral_style helix/omp command
</H3>
<P><B>Syntax:</B>
</P>
<PRE>dihedral_style helix
</PRE>
<P><B>Examples:</B>
</P>
<PRE>dihedral_style helix
dihedral_coeff 1 80.0 100.0 40.0
</PRE>
<P><B>Description:</B>
</P>
<P>The <I>helix</I> dihedral style uses the potential
</P>
<CENTER><IMG SRC = "Eqs/dihedral_helix.jpg">
</CENTER>
<P>This coarse-grain dihedral potential is described in <A HREF = "#Guo">(Guo)</A>.
For dihedral angles in the helical region, the energy function is
represented by a standard potential consisting of three minima, one
corresponding to the trans (t) state and the other to gauche states
(g+ and g-). The paper describes how the A,B,C parameters are chosen
so as to balance secondary (largely driven by local interactions) and
tertiary structure (driven by long-range interactions).
</P>
<P>The following coefficients must be defined for each dihedral type via the
<A HREF = "dihedral_coeff.html">dihedral_coeff</A> command as in the example above, or in
the data file or restart files read by the <A HREF = "read_data.html">read_data</A>
or <A HREF = "read_restart.html">read_restart</A> commands:
</P>
<UL><LI>A (energy)
<LI>B (energy)
<LI>C (energy)
</UL>
<HR>
<P>Styles with a <I>cuda</I>, <I>gpu</I>, <I>omp</I>, or <I>opt</I> suffix are functionally
the same as the corresponding style without the suffix. They have
been optimized to run faster, depending on your available hardware, as
discussed in <A HREF = "Section_accelerate.html">Section_accelerate</A> of the
manual. The accelerated styles take the same arguments and should
produce the same results, except for round-off and precision issues.
</P>
<P>These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT
packages, respectively. They are only enabled if LAMMPS was built with
those packages. See the <A HREF = "Section_start.html#start_3">Making LAMMPS</A>
section for more info.
</P>
<P>You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the <A HREF = "Section_start.html#start_7">-suffix command-line
switch</A> when you invoke LAMMPS, or you can
use the <A HREF = "suffix.html">suffix</A> command in your input script.
</P>
<P>See <A HREF = "Section_accelerate.html">Section_accelerate</A> of the manual for
more instructions on how to use the accelerated styles effectively.
</P>
<HR>
<P><B>Restrictions:</B>
</P>
<P>This dihedral style can only be used if LAMMPS was built with the
MOLECULAR package (which it is by default). See the <A HREF = "Section_start.html#start_3">Making
LAMMPS</A> section for more info on packages.
</P>
<P><B>Related commands:</B>
</P>
<P><A HREF = "dihedral_coeff.html">dihedral_coeff</A>
</P>
<P><B>Default:</B> none
</P>
<HR>
<A NAME = "Guo"></A>
<P><B>(Guo)</B> Guo and Thirumalai, Journal of Molecular Biology, 263, 323-43 (1996).
</P>
</HTML>
Event Timeline
Log In to Comment