Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91080497
ATC_TransferKernel.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Nov 7, 16:30
Size
17 KB
Mime Type
text/x-c
Expires
Sat, Nov 9, 16:30 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22152296
Attached To
rLAMMPS lammps
ATC_TransferKernel.cpp
View Options
// ATC headers
#include "ATC_TransferKernel.h"
#include "ATC_Error.h"
#include "FE_Engine.h"
#include "KernelFunction.h"
#include "LammpsInterface.h"
#include "Quadrature.h"
#include "PerPairQuantity.h"
#include "Stress.h"
#ifdef HAS_DXA
#include "DislocationExtractor.h"
#endif
// Other Headers
#include <vector>
#include <map>
#include <set>
#include <utility>
#include <fstream>
#include <exception>
using namespace std;
namespace ATC {
using ATC_Utility::to_string;
ATC_TransferKernel::ATC_TransferKernel(string groupName,
double **& perAtomArray,
LAMMPS_NS::Fix * thisFix,
string matParamFile)
: ATC_Transfer(groupName,perAtomArray,thisFix,matParamFile)
{
kernelBased_ = true;
}
//-------------------------------------------------------------------
ATC_TransferKernel::~ATC_TransferKernel()
{
}
//-------------------------------------------------------------------
bool ATC_TransferKernel::modify(int narg, char **arg)
{
bool match = false;
/*! \page man_hardy_kernel fix_modify AtC kernel
\section syntax
fix_modify AtC kernel <type> <parameters>
- type (keyword) = step, cell, cubic_bar, cubic_cylinder, cubic_sphere,
quartic_bar, quartic_cylinder, quartic_sphere \n
- parameters :\n
step = radius (double) \n
cell = hx, hy, hz (double) or h (double) \n
cubic_bar = half-width (double) \n
cubic_cylinder = radius (double) \n
cubic_sphere = radius (double) \n
quartic_bar = half-width (double) \n
quartic_cylinder = radius (double) \n
quartic_sphere = radius (double) \n
\section examples
<TT> fix_modify AtC kernel cell 1.0 1.0 1.0 </TT> \n
<TT> fix_modify AtC kernel quartic_sphere 10.0 </TT>
\section description
\section restrictions
Must be used with the hardy AtC fix \n
For bar kernel types, half-width oriented along x-direction \n
For cylinder kernel types, cylindrical axis is assumed to be in z-direction \n
( see \ref man_fix_atc )
\section related
\section default
No default
*/
// no match, call base class parser
if (!match) {
match = ATC_Transfer::modify(narg, arg);
}
return match;
}
//-------------------------------------------------------------------
void ATC_TransferKernel::compute_kernel_matrix_molecule(void) // KKM add
{
int nLocalMol = smallMoleculeSet_->local_molecule_count();
if (nLocal_>0) {
SPAR_MAT & N(kernelAccumulantMol_.set_quantity());
N.reset(nLocalMol,nNodes_);
SPAR_MAT & dN(kernelAccumulantMolGrad_.set_quantity());
dN.reset(nLocalMol,nNodes_);
DENS_VEC derivKer(nsd_);
DENS_VEC xI(nsd_),xm(nsd_),xmI(nsd_);
const DENS_MAT & centroidMolMatrix(moleculeCentroid_->quantity());
ATC::LammpsInterface::instance()->stream_msg_once("computing kernel matrix molecule ",true,false);
int heartbeatFreq = (nNodes_ <= 10 ? 1 : (int) nNodes_ / 10);
for (int i = 0; i < nNodes_; i++) {
if (i % heartbeatFreq == 0 ) {
ATC::LammpsInterface::instance()->stream_msg_once(".",false,false);
}
xI = (feEngine_->fe_mesh())->nodal_coordinates(i);
for (int j = 0; j < nLocalMol; j++) {
for (int k = 0; k < nsd_; k++) {
xm(k) = centroidMolMatrix(j,k);
}
xmI = xm - xI;
lammpsInterface_->periodicity_correction(xmI.ptr());
double val = kernelFunction_->value(xmI);
if (val > 0) N.add(j,i,val);
kernelFunction_->derivative(xmI,derivKer);
double val_grad = derivKer(2);
if (val_grad!= 0) dN.add(j,i,val_grad);
}
}
// reset kernelShpFunctions with the weights of molecules on processors
DENS_VEC fractions(N.nRows());
DENS_VEC fractions_deriv(dN.nRows());
for (int i = 0; i < nLocalMol; i++) {
fractions(i) = smallMoleculeSet_->local_fraction(i);
}
N.row_scale(fractions);
N.compress();
dN.row_scale(fractions);
dN.compress();
if (lammpsInterface_->rank_zero()) {
ATC::LammpsInterface::instance()->stream_msg_once("done",false,true);
}
}
}
//-------------------------------------------------------------------
void ATC_TransferKernel::compute_projection(const DENS_MAT & atomData,
DENS_MAT & nodeData)
{
DENS_MAT workNodeArray(nNodes_, atomData.nCols());
workNodeArray.zero();
nodeData.reset(workNodeArray.nRows(),workNodeArray.nCols());
nodeData.zero();
if (nLocal_>0) {
set_xPointer();
DENS_VEC xI(nsd_),xa(nsd_),xaI(nsd_);
double val;
for (int i = 0; i < nNodes_; i++) {
xI = (feEngine_->fe_mesh())->nodal_coordinates(i);
for (int j = 0; j < nLocal_; j++) {
int lammps_j = internalToAtom_(j);
xa.copy(xPointer_[lammps_j],3);
xaI = xa - xI;
lammpsInterface_->periodicity_correction(xaI.ptr());
val = kernelFunction_->value(xaI);
if (val > 0) {
for (int k=0; k < atomData.nCols(); k++) {
workNodeArray(i,k) += val*atomData(j,k);
}
}
}
}
}
// accumulate across processors
int count = workNodeArray.nRows()*workNodeArray.nCols();
lammpsInterface_->allsum(workNodeArray.ptr(),nodeData.ptr(),count);
}
//-------------------------------------------------------------------
void ATC_TransferKernel::compute_bond_matrix()
{
atomicBondMatrix_=bondMatrix_->quantity();
}
//-------------------------------------------------------------------
// on-the-fly calculation of stress
void ATC_TransferKernel::compute_potential_stress(DENS_MAT& stress)
{
set_xPointer();
stress.zero();
// neighbor lists
int *numneigh = lammpsInterface_->neighbor_list_numneigh();
int **firstneigh = lammpsInterface_->neighbor_list_firstneigh();
double ** xatom = lammpsInterface_->xatom();
double lam1,lam2;
double bond_value;
// process differently for mesh vs translation-invariant kernels
ATC::LammpsInterface::instance()->stream_msg_once("computing potential stress: ",true,false);
int heartbeatFreq = (nNodes_ <= 10 ? 1 : (int) nNodes_ / 10);
// "normal" kernel functions
DENS_VEC xa(nsd_),xI(nsd_),xaI(nsd_),xb(nsd_),xbI(nsd_),xba(nsd_);
double kernel_inv_vol = kernelFunction_->inv_vol();
for (int i = 0; i < nNodes_; i++) {
if (i % heartbeatFreq == 0 ) {
ATC::LammpsInterface::instance()->stream_msg_once(".",false,false);
}
// point
xI = (feEngine_->fe_mesh())->nodal_coordinates(i);
if (!kernelFunction_->node_contributes(xI)) {
continue;
}
int inode = i;
for (int j = 0; j < nLocal_; j++) {
// second (neighbor) atom location
int lammps_j = internalToAtom_(j);
xa.copy(xPointer_[lammps_j],3);
// difference vector
xaI = xa - xI;
lammpsInterface_->periodicity_correction(xaI.ptr());
for (int k = 0; k < numneigh[lammps_j]; ++k) {
int lammps_k = firstneigh[lammps_j][k];
// first atom location
xb.copy(xPointer_[lammps_k],3);
// difference vector
xba = xb - xa;
xbI = xba + xaI;
kernelFunction_->bond_intercepts(xaI,xbI,lam1,lam2);
// compute virial
if (lam1 < lam2) {
bond_value
= kernel_inv_vol*(kernelFunction_->bond(xaI,xbI,lam1,lam2));
double delx = xatom[lammps_j][0] - xatom[lammps_k][0];
double dely = xatom[lammps_j][1] - xatom[lammps_k][1];
double delz = xatom[lammps_j][2] - xatom[lammps_k][2];
double rsq = delx*delx + dely*dely + delz*delz;
double fforce = 0;
lammpsInterface_->pair_force(lammps_j,lammps_k,rsq,fforce);
fforce *= 0.5; // dbl count
if (atomToElementMapType_ == LAGRANGIAN) {
double delX = xref_[lammps_j][0] - xref_[lammps_k][0];
double delY = xref_[lammps_j][1] - xref_[lammps_k][1];
double delZ = xref_[lammps_j][2] - xref_[lammps_k][2];
stress(inode,0) +=-delx*fforce*delX*bond_value;
stress(inode,1) +=-delx*fforce*delY*bond_value;
stress(inode,2) +=-delx*fforce*delZ*bond_value;
stress(inode,3) +=-dely*fforce*delX*bond_value;
stress(inode,4) +=-dely*fforce*delY*bond_value;
stress(inode,5) +=-dely*fforce*delZ*bond_value;
stress(inode,6) +=-delz*fforce*delX*bond_value;
stress(inode,7) +=-delz*fforce*delY*bond_value;
stress(inode,8) +=-delz*fforce*delZ*bond_value;
}
else { //EULERIAN
stress(inode,0) +=-delx*delx*fforce*bond_value;
stress(inode,1) +=-dely*dely*fforce*bond_value;
stress(inode,2) +=-delz*delz*fforce*bond_value;
stress(inode,3) +=-delx*dely*fforce*bond_value;
stress(inode,4) +=-delx*delz*fforce*bond_value;
stress(inode,5) +=-dely*delz*fforce*bond_value;
}
}
}
}
}
ATC::LammpsInterface::instance()->stream_msg_once("done",false,true);
}
//-------------------------------------------------------------------
// on-the-fly calculation of the heat flux
void ATC_TransferKernel::compute_potential_heatflux(DENS_MAT& flux)
{
set_xPointer();
flux.zero();
// neighbor lists
int *numneigh = lammpsInterface_->neighbor_list_numneigh();
int **firstneigh = lammpsInterface_->neighbor_list_firstneigh();
double ** xatom = lammpsInterface_->xatom();
double ** vatom = lammpsInterface_->vatom();
double lam1,lam2;
double bond_value;
// process differently for mesh vs translation-invariant kernels
// "normal" kernel functions
DENS_VEC xa(nsd_),xI(nsd_),xaI(nsd_),xb(nsd_),xbI(nsd_),xba(nsd_);
double kernel_inv_vol = kernelFunction_->inv_vol();
for (int i = 0; i < nNodes_; i++) {
int inode = i;
// point
xI = (feEngine_->fe_mesh())->nodal_coordinates(i);
if (!kernelFunction_->node_contributes(xI)) {
continue;
}
for (int j = 0; j < nLocal_; j++) {
int lammps_j = internalToAtom_(j);
xa.copy(xPointer_[lammps_j],3);
// difference vector
xaI = xa - xI;
lammpsInterface_->periodicity_correction(xaI.ptr());
for (int k = 0; k < numneigh[lammps_j]; ++k) {
int lammps_k = firstneigh[lammps_j][k];
// first atom location
xb.copy(xPointer_[lammps_k],3);
// difference vector
xba = xb - xa;
xbI = xba + xaI;
kernelFunction_->bond_intercepts(xaI,xbI,lam1,lam2);
// compute virial
if (lam1 < lam2) {
bond_value
= kernel_inv_vol*(kernelFunction_->bond(xaI,xbI,lam1,lam2));
double delx = xatom[lammps_j][0] - xatom[lammps_k][0];
double dely = xatom[lammps_j][1] - xatom[lammps_k][1];
double delz = xatom[lammps_j][2] - xatom[lammps_k][2];
double rsq = delx*delx + dely*dely + delz*delz;
double fforce = 0;
lammpsInterface_->pair_force(lammps_j,lammps_k,rsq,fforce);
fforce *= 0.5; // dbl count
double * v = vatom[lammps_j];
fforce *= (delx*v[0] + dely*v[1] + delz*v[2]);
if (atomToElementMapType_ == LAGRANGIAN) {
double delX = xref_[lammps_j][0] - xref_[lammps_k][0];
double delY = xref_[lammps_j][1] - xref_[lammps_k][1];
double delZ = xref_[lammps_j][2] - xref_[lammps_k][2];
flux(inode,0) +=fforce*delX*bond_value;
flux(inode,1) +=fforce*delY*bond_value;
flux(inode,2) +=fforce*delZ*bond_value;
}
else { // EULERIAN
flux(inode,0) +=fforce*delx*bond_value;
flux(inode,1) +=fforce*dely*bond_value;
flux(inode,2) +=fforce*delz*bond_value;
}
}
}
}
}
}
//-------------------------------------------------------------------
// calculation of the dislocation density tensor
void ATC_TransferKernel::compute_dislocation_density(DENS_MAT & A)
{
A.reset(nNodes_,9);
#ifdef HAS_DXA
double cnaCutoff = lammpsInterface_->near_neighbor_cutoff();
// Extract dislocation lines within the processor's domain.
DXADislocationExtractor extractor(lammpsInterface_->lammps_pointer(),dxaExactMode_);
extractor.extractDislocations(lammpsInterface_->neighbor_list(), cnaCutoff);
// Calculate scalar dislocation density and density tensor.
double dislocationDensity = 0.0;
double dislocationDensityTensor[9] = {0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0};
const std::vector<DislocationSegment*>& segments = extractor.getSegments();
int localNumberLines = (int) segments.size();
int totalNumberLines;
lammpsInterface_->int_allsum(&localNumberLines,&totalNumberLines,1);
if (totalNumberLines == 0) {
ATC::LammpsInterface::instance()->print_msg_once("no dislocation lines found");
return;
}
// for output
int nPt = 0, nSeg = 0;
for(unsigned segmentIndex = 0; segmentIndex < segments.size(); segmentIndex++) {
DislocationSegment* segment = segments[segmentIndex];
const std::deque<Point3>& line = segment->line;
nPt += line.size();
nSeg += line.size()-1;
}
DENS_MAT segCoor(3,nPt);
Array2D<int> segConn(2,nSeg);
DENS_MAT segBurg(nPt,3);
DENS_MAT local_A(nNodes_,9);
local_A.zero();
DENS_VEC xa(nsd_),xI(nsd_),xaI(nsd_),xb(nsd_),xbI(nsd_),xba(nsd_);
double kernel_inv_vol = kernelFunction_->inv_vol();
int iPt = 0, iSeg= 0;
for(unsigned segmentIndex = 0; segmentIndex < segments.size(); segmentIndex++) {
DislocationSegment* segment = segments[segmentIndex];
const std::deque<Point3>& line = segment->line;
Vector3 burgers = segment->burgersVectorWorld;
Point3 x1, x2;
for(std::deque<Point3>::const_iterator p1 = line.begin(), p2 = line.begin() + 1; p2 < line.end(); ++p1, ++p2) {
x1 = (*p1);
x2 = (*p2);
Vector3 delta = x2 - x1;
// totals
dislocationDensity += Length(delta);
for(int i = 0; i < 3; i++) {
for(int j = 0; j < 3; j++) {
dislocationDensityTensor[3*j+i] += delta[i] * burgers[j];
}
}
// nodal partition
for(int k = 0; k < 3; k++) {
xa(k) = x1[k];
xb(k) = x2[k];
xba(k) = delta[k];
}
for (int I = 0; I < nNodes_; I++) {
xI = (feEngine_->fe_mesh())->nodal_coordinates(I);
if (!kernelFunction_->node_contributes(xI)) {
continue;
}
xaI = xa - xI;
lammpsInterface_->periodicity_correction(xaI.ptr());
xbI = xba + xaI;
double lam1=0,lam2=0;
kernelFunction_->bond_intercepts(xaI,xbI,lam1,lam2);
if (lam1 < lam2) {
double bond_value
= kernel_inv_vol*(kernelFunction_->bond(xaI,xbI,lam1,lam2));
local_A(I,0) += xba(0)*burgers[0]*bond_value;
local_A(I,1) += xba(0)*burgers[1]*bond_value;
local_A(I,2) += xba(0)*burgers[2]*bond_value;
local_A(I,3) += xba(1)*burgers[0]*bond_value;
local_A(I,4) += xba(1)*burgers[1]*bond_value;
local_A(I,5) += xba(1)*burgers[2]*bond_value;
local_A(I,6) += xba(2)*burgers[0]*bond_value;
local_A(I,7) += xba(2)*burgers[1]*bond_value;
local_A(I,8) += xba(2)*burgers[2]*bond_value;
}
}
segCoor(0,iPt) = x1[0];
segCoor(1,iPt) = x1[1];
segCoor(2,iPt) = x1[2];
segBurg(iPt,0) = burgers[0];
segBurg(iPt,1) = burgers[1];
segBurg(iPt,2) = burgers[2];
segConn(0,iSeg) = iPt;
segConn(1,iSeg) = iPt+1;
iPt++;
iSeg++;
}
segCoor(0,iPt) = x2[0];
segCoor(1,iPt) = x2[1];
segCoor(2,iPt) = x2[2];
segBurg(iPt,0) = burgers[0];
segBurg(iPt,1) = burgers[1];
segBurg(iPt,2) = burgers[2];
iPt++;
}
int count = nNodes_*9;
lammpsInterface_->allsum(local_A.ptr(),A.ptr(),count);
double totalDislocationDensity;
lammpsInterface_->allsum(&dislocationDensity,&totalDislocationDensity,1);
double totalDislocationDensityTensor[9];
lammpsInterface_->allsum(dislocationDensityTensor,totalDislocationDensityTensor,9);
int totalNumberSegments;
lammpsInterface_->int_allsum(&nSeg,&totalNumberSegments,1);
// output
double volume = lammpsInterface_->domain_volume();
stringstream ss;
ss << "total dislocation line length = " << totalDislocationDensity;
ss << " lines = " << totalNumberLines << " segments = " << totalNumberSegments;
ss << "\n ";
ss << "total dislocation density tensor = \n";
for(int i = 0; i < 3; i++) {
ss << " ";
for(int j = 0; j < 3; j++) {
totalDislocationDensityTensor[3*j+i] /= volume;
ss << totalDislocationDensityTensor[3*j+i] << " ";
}
ss << "\n";
}
ATC::LammpsInterface::instance()->print_msg_once(ss.str());
if (nSeg > 0) {
set<int> otypes;
otypes.insert(VTK);
otypes.insert(FULL_GNUPLOT);
string name = "dislocation_segments_step=" ;
name += to_string(output_index());
OutputManager segOutput(name,otypes);
segOutput.write_geometry(&segCoor,&segConn);
OUTPUT_LIST segOut;
segOut["burgers_vector"] = &segBurg;
segOutput.write_data(0,&segOut);
}
#else
throw ATC_Error("unimplemented function compute_dislocation_density (DXA support not included");
#endif
}
} // end namespace ATC
Event Timeline
Log In to Comment