Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F102269016
LinearSolver.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Feb 18, 23:01
Size
15 KB
Mime Type
text/x-c
Expires
Thu, Feb 20, 23:01 (2 d)
Engine
blob
Format
Raw Data
Handle
24320443
Attached To
rLAMMPS lammps
LinearSolver.cpp
View Options
// Header file for this class
#include "LinearSolver.h"
#include <sstream>
using std::stringstream;
using std::set;
namespace ATC {
const double kPenalty = 1.0e4;
const double kTol = 1.0e-8;
const int kMaxDirect = 1000;
// ====================================================================
// LinearSolver
// ====================================================================
LinearSolver::LinearSolver(
const SPAR_MAT & A,
const BC_SET & bcs,
const int solverType,
const int constraintHandlerType,
bool parallel
)
: solverType_(solverType),
constraintHandlerType_(constraintHandlerType),
nVariables_(0),
initialized_(false),
initializedMatrix_(false),
initializedInverse_(false),
matrixModified_(false),
allowReinitialization_(false),
homogeneousBCs_(false),
bcs_(&bcs),
rhs_(NULL),
rhsDense_(),
b_(NULL),
matrix_(A),
matrixDense_(),
matrixFreeFree_(), matrixFreeFixed_(),matrixInverse_(),
penalty_(1),
maxIterations_(0), maxRestarts_(0), tol_(0),
parallel_(parallel)
{
// deep copy
matrixCopy_ = A;
matrixSparse_ = &matrixCopy_;
setup();
}
LinearSolver::LinearSolver(
const SPAR_MAT & A,
const int solverType,
bool parallel
)
: solverType_(solverType),
constraintHandlerType_(NO_CONSTRAINTS),
nVariables_(0),
initialized_(false),
initializedMatrix_(true),
initializedInverse_(false),
matrixModified_(false),
allowReinitialization_(false),
homogeneousBCs_(false),
bcs_(NULL), // null implies no contraints will be added later
rhs_(NULL),
rhsDense_(), b_(NULL),
matrix_(A),
matrixDense_(),
matrixFreeFree_(), matrixFreeFixed_(),matrixInverse_(),
penalty_(1),
maxIterations_(0), maxRestarts_(0), tol_(0),
parallel_(parallel)
{
// shallow copy
matrixSparse_ = &A;
setup();
}
// --------------------------------------------------------------------
// Setup
// --------------------------------------------------------------------
void LinearSolver::setup(void)
{
tol_ = kTol;
nVariables_ = matrix_.nRows();
maxIterations_=2*nVariables_;
maxRestarts_=nVariables_;
// switch method based on size
if (solverType_ < 0) {
if (nVariables_ > kMaxDirect ) {
solverType_ = ITERATIVE_SOLVE_SYMMETRIC;
constraintHandlerType_ = PENALIZE_CONSTRAINTS;
}
else {
solverType_ = DIRECT_SOLVE;
}
}
if (constraintHandlerType_ < 0) {
constraintHandlerType_ = PENALIZE_CONSTRAINTS;
if (solverType_ == DIRECT_SOLVE) constraintHandlerType_ = CONDENSE_CONSTRAINTS;
}
if ( solverType_ == DIRECT_SOLVE && constraintHandlerType_ == CONDENSE_CONSTRAINTS ) allowReinitialization_ = true;
if ( solverType_ == ITERATIVE_SOLVE_SYMMETRIC && constraintHandlerType_ == CONDENSE_CONSTRAINTS ) { throw ATC_Error("LinearSolver::unimplemented method"); }
}
// --------------------------------------------------------------------
// Initialize
// --------------------------------------------------------------------
void LinearSolver::allow_reinitialization(void)
{
if (constraintHandlerType_ == PENALIZE_CONSTRAINTS) {
if (matrixModified_ ) throw ATC_Error("LinearSolver: can't allow reinitialization after matrix has been modified");
matrixOriginal_ = *matrixSparse_;
}
allowReinitialization_ = true;
}
void LinearSolver::initialize(const BC_SET * bcs)
{
if (bcs) {
if (! allowReinitialization_ ) throw ATC_Error("LinearSolver: reinitialization not allowed");
//if (! bcs_ ) throw ATC_Error("LinearSolver: adding constraints after constructing without constraints is not allowed");
// shallow --> deep copy
if (! bcs_ ) { // constraintHandlerType_ == NO_CONSTRAINTS
if (matrixModified_) {
throw ATC_Error("LinearSolver: adding constraints after constructing without constraints is not allowed if matrix has been modified");
}
else {
matrixCopy_ = *matrixSparse_;
matrixSparse_ = &matrixCopy_;
constraintHandlerType_ = -1;
setup();
}
}
bcs_ = bcs;
initializedMatrix_ = false;
initializedInverse_ = false;
if (matrixModified_) {
matrixCopy_ = matrixOriginal_;
matrixSparse_ = &matrixCopy_;
}
}
initialize_matrix();
initialize_inverse();
initialize_rhs();
initialized_ = true;
}
// --------------------------------------------------------------------
// initialize_matrix
// --------------------------------------------------------------------
void LinearSolver::initialize_matrix(void)
{
if ( initializedMatrix_ ) return;
if (constraintHandlerType_ == PENALIZE_CONSTRAINTS) {
add_matrix_penalty();
}
else if (constraintHandlerType_ == CONDENSE_CONSTRAINTS) {
partition_matrix();
}
initializedMatrix_ = true;
}
// --------------------------------------------------------------------
// initialize_inverse
// --------------------------------------------------------------------
void LinearSolver::initialize_inverse(void)
{
if ( initializedInverse_ ) return;
if (solverType_ == ITERATIVE_SOLVE_SYMMETRIC
|| solverType_ == ITERATIVE_SOLVE ) {
matrixDiagonal_ = matrixSparse_->diag(); // preconditioner
}
else { // DIRECT_SOLVE
if (constraintHandlerType_ == CONDENSE_CONSTRAINTS) {
if( num_unknowns() > 0 ) {
matrixInverse_ = inv(matrixFreeFree_);
}
}
else { // NO_CONSTRAINTS || PENALIZE_CONSTRAINTS
matrixDense_ = matrixSparse_->dense_copy(); // need dense for lapack
matrixInverse_ = inv(matrixDense_);
}
}
initializedInverse_ = true;
}
// --------------------------------------------------------------------
// initialize_rhs
// --------------------------------------------------------------------
void LinearSolver::initialize_rhs(void)
{
if (! rhs_ ) return;
if (! bcs_ ) {
b_ = rhs_;
return;
}
if (constraintHandlerType_ == PENALIZE_CONSTRAINTS) {
add_rhs_penalty();
}
else if (constraintHandlerType_ == CONDENSE_CONSTRAINTS) {
add_rhs_influence();
}
}
// --------------------------------------------------------------------
// add matrix penalty
// - change matrix for Dirichlet conditions: add penalty
// --------------------------------------------------------------------
void LinearSolver::add_matrix_penalty(void)
{
penalty_ = kPenalty; // relative to matrix diagonal
SPAR_MAT & A = matrixCopy_;
penalty_ *= (A.diag()).maxabs();
BC_SET::const_iterator itr;
for (itr = bcs_->begin(); itr != bcs_->end(); itr++) {
int i = itr->first;
A.add(i,i,penalty_); // modifies matrix
}
A.compress();
matrixModified_ = true;
}
// --------------------------------------------------------------------
// partition matrix
// - partition matrix based on Dirichlet constraints
// --------------------------------------------------------------------
void LinearSolver::partition_matrix(void)
{
fixedSet_.clear();
BC_SET::const_iterator itr;
for (itr = bcs_->begin(); itr != bcs_->end(); itr++) {
int i = itr->first;
fixedSet_.insert(i);
}
freeSet_.clear();
freeGlobalToCondensedMap_.clear();
int j = 0; // local index
for (int i = 0; i < nVariables_; i++) {
if (fixedSet_.find(i) == fixedSet_.end() ) {
freeSet_.insert(i);
freeGlobalToCondensedMap_[i] = j++;
}
}
if (matrixDense_.nRows() == 0) matrixDense_ =matrixSparse_->dense_copy();
DENS_MAT & K = matrixDense_;
K.row_partition(freeSet_,matrixFreeFree_,matrixFreeFixed_);
}
// --------------------------------------------------------------------
// add_rhs_penalty
// --------------------------------------------------------------------
void LinearSolver::add_rhs_penalty()
{
// deep copy
VECTOR & b = rhsDense_;
const VECTOR & r = *rhs_;
int size = r.nRows();
b.reset(size);
for (int i = 0; i < size; i++) {
b(i) = r(i);
}
if ( ! homogeneousBCs_ ){
BC_SET::const_iterator itr;
for (itr = bcs_->begin(); itr != bcs_->end(); itr++) {
int i = itr->first;
double v = itr->second;
b(i) += penalty_ * v;
}
}
b_ = &rhsDense_;
}
// --------------------------------------------------------------------
// add_rhs_influence
// --------------------------------------------------------------------
void LinearSolver::add_rhs_influence()
{
if (! initializedMatrix_ ) partition_matrix();
// rhs = rhs + K_free,fixed * x_fixed
int nbcs = bcs_->size();
if (nbcs == 0) { // no bcs to handle
b_ = rhs_;
}
else {
DENS_VEC & b = rhsDense_;
if ( ! homogeneousBCs_ ){
DENS_VEC xFixed(nbcs);
BC_SET::const_iterator itr;
int i = 0;
for (itr = bcs_->begin(); itr != bcs_->end(); itr++,i++) {
double v = itr->second;
xFixed(i,0) = -v;
}
b = matrixFreeFixed_*xFixed; // matrix and bcs have same ordering
}
else {
b.reset(matrixFreeFixed_.nRows());
}
const VECTOR & r = *rhs_;
set<int>::const_iterator iter;
int i = 0;
for (iter = freeSet_.begin(); iter != freeSet_.end(); iter++,i++) {
b(i) += r(*iter);
}
b_ = &rhsDense_;
}
}
// --------------------------------------------------------------------
// set fixed values
// - {x_i = y_i}
// --------------------------------------------------------------------
void LinearSolver::set_fixed_values(VECTOR & X)
{
BC_SET::const_iterator itr;
for (itr = bcs_->begin(); itr != bcs_->end(); itr++) {
int i = itr->first;
double v = 0;
if ( ! homogeneousBCs_ ) v = itr->second;
X(i) = v;
}
}
// --------------------------------------------------------------------
// Eigensystem
// --------------------------------------------------------------------
// calls lapack
void LinearSolver::eigen_system( DENS_MAT & eigenvalues, DENS_MAT & eigenvectors, const DENS_MAT * M) /* const */
{
initialize_matrix(); // no inverse needed
const DENS_MAT * Kp = NULL;
const DENS_MAT * Mp =M;
DENS_MAT MM;
DENS_MAT KM;
if (constraintHandlerType_ == CONDENSE_CONSTRAINTS) {
Kp = &matrixFreeFree_;
if (M) {
DENS_MAT MfreeFixed; // not used
M->row_partition(freeSet_,MM,MfreeFixed);
Mp = &MM;
}
}
else {
if (matrixDense_.nRows() == 0) matrixDense_ =matrixSparse_->dense_copy();
Kp = &matrixDense_;
}
if (!M) {
MM.identity(Kp->nRows());
Mp = &MM;
}
DENS_MAT eVecs, eVals;
eVecs = eigensystem(*Kp,*Mp,eVals);
eigenvalues.reset(nVariables_,1);
eigenvectors.reset(nVariables_,nVariables_);
set<int>::const_iterator itr;
for (int i = 0; i < Kp->nRows(); i++) { // ordering is by energy not node
eigenvalues(i,0) = eVals(i,0);
int j = 0;
for (itr = freeSet_.begin(); itr != freeSet_.end(); itr++,j++) {
int jj = *itr;
eigenvectors(jj,i) = eVecs(j,i); // transpose
}
}
}
// --------------------------------------------------------------------
// solve
// - solves A x = b
// - if a "b" is provided it is used as the new rhs
// --------------------------------------------------------------------
bool LinearSolver::solve(VECTOR & x, const VECTOR & b)
{
SPAR_MAT * A = NULL;
rhs_ = &b;
initialized_ = false;
initialize();
if (num_unknowns() == 0) {
set_fixed_values(x);
return true;
}
const VECTOR & r = *b_;
if (solverType_ == ITERATIVE_SOLVE_SYMMETRIC) {
if (parallel_) {
A = new PAR_SPAR_MAT(LammpsInterface::instance()->world(), *matrixSparse_);
}
else {
A = new SPAR_MAT(*matrixSparse_);
}
DIAG_MAT & PC = matrixDiagonal_;
int niter = maxIterations_;
double tol = tol_;
int convergence = CG(*A, x, r, PC, niter, tol);// CG changes niter, tol
if (convergence>0) {
stringstream ss;
ss << "CG solve did not converge,";
ss << " iterations: " << niter;
ss << " residual: " << tol;
throw ATC_Error(ss.str());
}
}
else if (solverType_ == ITERATIVE_SOLVE) {
if (parallel_) {
A = new PAR_SPAR_MAT(LammpsInterface::instance()->world(), *matrixSparse_);
}
else {
A = new SPAR_MAT(*matrixSparse_);
}
const DIAG_MAT & PC = matrixDiagonal_;
int iterations = maxIterations_;
int restarts = maxRestarts_;
double tol = tol_;
DENS_MAT H(maxRestarts_+1, maxRestarts_);
DENS_VEC xx(nVariables_);
DENS_VEC bb;
bb = b;
int convergence = GMRES(*A, xx, bb, PC, H, restarts, iterations, tol);
if (convergence>0) {
stringstream ss;
ss << "GMRES greens_function solve did not converge,";
ss << " iterations: " << iterations;
ss << " residual: " << tol;
throw ATC_Error(ss.str());
}
x.copy(xx.ptr(),xx.nRows());
}
else { // DIRECT_SOLVE
const DENS_MAT & invA = matrixInverse_;
if (constraintHandlerType_ == CONDENSE_CONSTRAINTS) {
DENS_MAT xx = invA*r;
int i = 0;
set<int>::const_iterator itr;
for (itr = freeSet_.begin(); itr != freeSet_.end(); itr++,i++) {
int ii = *itr;
x(ii) = xx(i,0);
}
set_fixed_values(x);
}
else {
DENS_VEC xx = invA*r;
for (int i = 0; i < xx.nRows(); i++) {
x(i) = xx(i);
}
}
}
delete A;
return true;
}
// --------------------------------------------------------------------
// greens function
// - returns the solution to a Kronecker delta rhs b = {0 0 .. 1 .. 0 0}
// and with homogeneous constraints {x_i = 0}
// --------------------------------------------------------------------
void LinearSolver::greens_function(int I, VECTOR & G_I)
{
SPAR_MAT * A = NULL;
initialize_matrix();
initialize_inverse();
G_I.reset(nVariables_);
VECTOR & x = G_I;
if (solverType_ == ITERATIVE_SOLVE_SYMMETRIC) {
DENS_VEC b(nVariables_); b = 0.0; b(I) = 1.0;
if (parallel_) {
A = new PAR_SPAR_MAT(LammpsInterface::instance()->world(), *matrixSparse_);
}
else {
A = new SPAR_MAT(*matrixSparse_);
}
const DIAG_MAT & PC = matrixDiagonal_;
int niter = maxIterations_;
double tol = tol_;
int convergence = CG(*A, x, b, PC, niter, tol);
if (convergence>0) {
stringstream ss;
ss << "CG greens_function solve did not converge,";
ss << " iterations: " << niter;
ss << " residual: " << tol;
throw ATC_Error(ss.str());
}
}
else if (solverType_ == ITERATIVE_SOLVE) {
DENS_VEC b(nVariables_); b = 0.0; b(I) = 1.0;
// VECTOR & bb = b;
if (parallel_) {
A = new PAR_SPAR_MAT(LammpsInterface::instance()->world(), *matrixSparse_);
}
else {
A = new SPAR_MAT(*matrixSparse_);
}
// const DENS_MAT A = matrixSparse_->dense_copy();
const DIAG_MAT & PC = matrixDiagonal_;
int iterations = maxIterations_;
int restarts = maxRestarts_;
double tol = tol_;
DENS_MAT H(maxRestarts_+1, maxRestarts_);
DENS_VEC xx(nVariables_);
int convergence = GMRES(*A, xx, b, PC, H, restarts, iterations, tol);
if (convergence>0) {
stringstream ss;
ss << "GMRES greens_function solve did not converge,";
ss << " iterations: " << iterations;
ss << " residual: " << tol;
throw ATC_Error(ss.str());
}
x.copy(xx.ptr(),xx.nRows());
}
else {
const DENS_MAT & invA = matrixInverse_;
if (constraintHandlerType_ == CONDENSE_CONSTRAINTS) {
set<int>::const_iterator itr;
for (itr = fixedSet_.begin(); itr != fixedSet_.end(); itr++) {
int ii = *itr;
x(ii) = 0;
}
itr = freeSet_.find(I);
if (itr !=freeSet_.end() ) {
int j = freeGlobalToCondensedMap_[I];
int i = 0;
for (itr = freeSet_.begin(); itr != freeSet_.end(); itr++,i++) {
int ii = *itr;
x(ii) = invA(j,i);
}
}
}
else {
for (int i = 0; i < nVariables_; ++i) x(i) = invA(I,i);
}
}
delete A;
}
} // namespace ATC
Event Timeline
Log In to Comment