Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90949900
colvarcomp_angles.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Nov 6, 08:18
Size
10 KB
Mime Type
text/x-c
Expires
Fri, Nov 8, 08:18 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22166186
Attached To
rLAMMPS lammps
colvarcomp_angles.cpp
View Options
#include "colvarmodule.h"
#include "colvar.h"
#include "colvarcomp.h"
#include <cmath>
colvar
::
angle
::
angle
(
std
::
string
const
&
conf
)
:
cvc
(
conf
)
{
function_type
=
"angle"
;
b_inverse_gradients
=
true
;
b_Jacobian_derivative
=
true
;
parse_group
(
conf
,
"group1"
,
group1
);
parse_group
(
conf
,
"group2"
,
group2
);
parse_group
(
conf
,
"group3"
,
group3
);
atom_groups
.
push_back
(
&
group1
);
atom_groups
.
push_back
(
&
group2
);
atom_groups
.
push_back
(
&
group3
);
if
(
get_keyval
(
conf
,
"oneSiteSystemForce"
,
b_1site_force
,
false
))
{
cvm
::
log
(
"Computing system force on group 1 only"
);
}
x
.
type
(
colvarvalue
::
type_scalar
);
}
colvar
::
angle
::
angle
(
cvm
::
atom
const
&
a1
,
cvm
::
atom
const
&
a2
,
cvm
::
atom
const
&
a3
)
:
group1
(
std
::
vector
<
cvm
::
atom
>
(
1
,
a1
)),
group2
(
std
::
vector
<
cvm
::
atom
>
(
1
,
a2
)),
group3
(
std
::
vector
<
cvm
::
atom
>
(
1
,
a3
))
{
function_type
=
"angle"
;
b_inverse_gradients
=
true
;
b_Jacobian_derivative
=
true
;
b_1site_force
=
false
;
atom_groups
.
push_back
(
&
group1
);
atom_groups
.
push_back
(
&
group2
);
atom_groups
.
push_back
(
&
group3
);
x
.
type
(
colvarvalue
::
type_scalar
);
}
colvar
::
angle
::
angle
()
{
function_type
=
"angle"
;
x
.
type
(
colvarvalue
::
type_scalar
);
}
void
colvar
::
angle
::
calc_value
()
{
group1
.
read_positions
();
group2
.
read_positions
();
group3
.
read_positions
();
cvm
::
atom_pos
const
g1_pos
=
group1
.
center_of_mass
();
cvm
::
atom_pos
const
g2_pos
=
group2
.
center_of_mass
();
cvm
::
atom_pos
const
g3_pos
=
group3
.
center_of_mass
();
r21
=
cvm
::
position_distance
(
g2_pos
,
g1_pos
);
r21l
=
r21
.
norm
();
r23
=
cvm
::
position_distance
(
g2_pos
,
g3_pos
);
r23l
=
r23
.
norm
();
cvm
::
real
const
cos_theta
=
(
r21
*
r23
)
/
(
r21l
*
r23l
);
x
.
real_value
=
(
180.0
/
PI
)
*
std
::
acos
(
cos_theta
);
}
void
colvar
::
angle
::
calc_gradients
()
{
cvm
::
real
const
cos_theta
=
(
r21
*
r23
)
/
(
r21l
*
r23l
);
cvm
::
real
const
dxdcos
=
-
1.0
/
std
::
sqrt
(
1.0
-
cos_theta
*
cos_theta
);
dxdr1
=
(
180.0
/
PI
)
*
dxdcos
*
(
1.0
/
r21l
)
*
(
r23
/
r23l
+
(
-
1.0
)
*
cos_theta
*
r21
/
r21l
);
dxdr3
=
(
180.0
/
PI
)
*
dxdcos
*
(
1.0
/
r23l
)
*
(
r21
/
r21l
+
(
-
1.0
)
*
cos_theta
*
r23
/
r23l
);
for
(
size_t
i
=
0
;
i
<
group1
.
size
();
i
++
)
{
group1
[
i
].
grad
=
(
group1
[
i
].
mass
/
group1
.
total_mass
)
*
(
dxdr1
);
}
for
(
size_t
i
=
0
;
i
<
group2
.
size
();
i
++
)
{
group2
[
i
].
grad
=
(
group2
[
i
].
mass
/
group2
.
total_mass
)
*
(
dxdr1
+
dxdr3
)
*
(
-
1.0
);
}
for
(
size_t
i
=
0
;
i
<
group3
.
size
();
i
++
)
{
group3
[
i
].
grad
=
(
group3
[
i
].
mass
/
group3
.
total_mass
)
*
(
dxdr3
);
}
}
void
colvar
::
angle
::
calc_force_invgrads
()
{
// This uses a force measurement on groups 1 and 3 only
// to keep in line with the implicit variable change used to
// evaluate the Jacobian term (essentially polar coordinates
// centered on group2, which means group2 is kept fixed
// when propagating changes in the angle)
if
(
b_1site_force
)
{
group1
.
read_system_forces
();
cvm
::
real
norm_fact
=
1.0
/
dxdr1
.
norm2
();
ft
.
real_value
=
norm_fact
*
dxdr1
*
group1
.
system_force
();
}
else
{
group1
.
read_system_forces
();
group3
.
read_system_forces
();
cvm
::
real
norm_fact
=
1.0
/
(
dxdr1
.
norm2
()
+
dxdr3
.
norm2
());
ft
.
real_value
=
norm_fact
*
(
dxdr1
*
group1
.
system_force
()
+
dxdr3
*
group3
.
system_force
());
}
return
;
}
void
colvar
::
angle
::
calc_Jacobian_derivative
()
{
// det(J) = (2 pi) r^2 * sin(theta)
// hence Jd = cot(theta)
const
cvm
::
real
theta
=
x
.
real_value
*
PI
/
180.0
;
jd
=
PI
/
180.0
*
(
theta
!=
0.0
?
std
::
cos
(
theta
)
/
std
::
sin
(
theta
)
:
0.0
);
}
void
colvar
::
angle
::
apply_force
(
colvarvalue
const
&
force
)
{
if
(
!
group1
.
noforce
)
group1
.
apply_colvar_force
(
force
.
real_value
);
if
(
!
group2
.
noforce
)
group2
.
apply_colvar_force
(
force
.
real_value
);
if
(
!
group3
.
noforce
)
group3
.
apply_colvar_force
(
force
.
real_value
);
}
colvar
::
dihedral
::
dihedral
(
std
::
string
const
&
conf
)
:
cvc
(
conf
)
{
function_type
=
"dihedral"
;
period
=
360.0
;
b_periodic
=
true
;
b_inverse_gradients
=
true
;
b_Jacobian_derivative
=
true
;
if
(
get_keyval
(
conf
,
"oneSiteSystemForce"
,
b_1site_force
,
false
))
{
cvm
::
log
(
"Computing system force on group 1 only"
);
}
parse_group
(
conf
,
"group1"
,
group1
);
parse_group
(
conf
,
"group2"
,
group2
);
parse_group
(
conf
,
"group3"
,
group3
);
parse_group
(
conf
,
"group4"
,
group4
);
atom_groups
.
push_back
(
&
group1
);
atom_groups
.
push_back
(
&
group2
);
atom_groups
.
push_back
(
&
group3
);
atom_groups
.
push_back
(
&
group4
);
x
.
type
(
colvarvalue
::
type_scalar
);
}
colvar
::
dihedral
::
dihedral
(
cvm
::
atom
const
&
a1
,
cvm
::
atom
const
&
a2
,
cvm
::
atom
const
&
a3
,
cvm
::
atom
const
&
a4
)
:
group1
(
std
::
vector
<
cvm
::
atom
>
(
1
,
a1
)),
group2
(
std
::
vector
<
cvm
::
atom
>
(
1
,
a2
)),
group3
(
std
::
vector
<
cvm
::
atom
>
(
1
,
a3
)),
group4
(
std
::
vector
<
cvm
::
atom
>
(
1
,
a4
))
{
if
(
cvm
::
debug
())
cvm
::
log
(
"Initializing dihedral object from atom groups.
\n
"
);
function_type
=
"dihedral"
;
period
=
360.0
;
b_periodic
=
true
;
b_inverse_gradients
=
true
;
b_Jacobian_derivative
=
true
;
b_1site_force
=
false
;
atom_groups
.
push_back
(
&
group1
);
atom_groups
.
push_back
(
&
group2
);
atom_groups
.
push_back
(
&
group3
);
atom_groups
.
push_back
(
&
group4
);
x
.
type
(
colvarvalue
::
type_scalar
);
if
(
cvm
::
debug
())
cvm
::
log
(
"Done initializing dihedral object from atom groups.
\n
"
);
}
colvar
::
dihedral
::
dihedral
()
{
function_type
=
"dihedral"
;
period
=
360.0
;
b_periodic
=
true
;
b_inverse_gradients
=
true
;
b_Jacobian_derivative
=
true
;
x
.
type
(
colvarvalue
::
type_scalar
);
}
void
colvar
::
dihedral
::
calc_value
()
{
group1
.
read_positions
();
group2
.
read_positions
();
group3
.
read_positions
();
group4
.
read_positions
();
cvm
::
atom_pos
const
g1_pos
=
group1
.
center_of_mass
();
cvm
::
atom_pos
const
g2_pos
=
group2
.
center_of_mass
();
cvm
::
atom_pos
const
g3_pos
=
group3
.
center_of_mass
();
cvm
::
atom_pos
const
g4_pos
=
group4
.
center_of_mass
();
// Usual sign convention: r12 = r2 - r1
r12
=
cvm
::
position_distance
(
g1_pos
,
g2_pos
);
r23
=
cvm
::
position_distance
(
g2_pos
,
g3_pos
);
r34
=
cvm
::
position_distance
(
g3_pos
,
g4_pos
);
cvm
::
rvector
const
n1
=
cvm
::
rvector
::
outer
(
r12
,
r23
);
cvm
::
rvector
const
n2
=
cvm
::
rvector
::
outer
(
r23
,
r34
);
cvm
::
real
const
cos_phi
=
n1
*
n2
;
cvm
::
real
const
sin_phi
=
n1
*
r34
*
r23
.
norm
();
x
.
real_value
=
(
180.0
/
PI
)
*
std
::
atan2
(
sin_phi
,
cos_phi
);
this
->
wrap
(
x
);
}
void
colvar
::
dihedral
::
calc_gradients
()
{
cvm
::
rvector
A
=
cvm
::
rvector
::
outer
(
r12
,
r23
);
cvm
::
real
rA
=
A
.
norm
();
cvm
::
rvector
B
=
cvm
::
rvector
::
outer
(
r23
,
r34
);
cvm
::
real
rB
=
B
.
norm
();
cvm
::
rvector
C
=
cvm
::
rvector
::
outer
(
r23
,
A
);
cvm
::
real
rC
=
C
.
norm
();
cvm
::
real
const
cos_phi
=
(
A
*
B
)
/
(
rA
*
rB
);
cvm
::
real
const
sin_phi
=
(
C
*
B
)
/
(
rC
*
rB
);
cvm
::
rvector
f1
,
f2
,
f3
;
rB
=
1.0
/
rB
;
B
*=
rB
;
if
(
std
::
fabs
(
sin_phi
)
>
0.1
)
{
rA
=
1.0
/
rA
;
A
*=
rA
;
cvm
::
rvector
const
dcosdA
=
rA
*
(
cos_phi
*
A
-
B
);
cvm
::
rvector
const
dcosdB
=
rB
*
(
cos_phi
*
B
-
A
);
rA
=
1.0
;
cvm
::
real
const
K
=
(
1.0
/
sin_phi
)
*
(
180.0
/
PI
);
f1
=
K
*
cvm
::
rvector
::
outer
(
r23
,
dcosdA
);
f3
=
K
*
cvm
::
rvector
::
outer
(
dcosdB
,
r23
);
f2
=
K
*
(
cvm
::
rvector
::
outer
(
dcosdA
,
r12
)
+
cvm
::
rvector
::
outer
(
r34
,
dcosdB
));
}
else
{
rC
=
1.0
/
rC
;
C
*=
rC
;
cvm
::
rvector
const
dsindC
=
rC
*
(
sin_phi
*
C
-
B
);
cvm
::
rvector
const
dsindB
=
rB
*
(
sin_phi
*
B
-
C
);
rC
=
1.0
;
cvm
::
real
const
K
=
(
-
1.0
/
cos_phi
)
*
(
180.0
/
PI
);
f1
.
x
=
K
*
((
r23
.
y
*
r23
.
y
+
r23
.
z
*
r23
.
z
)
*
dsindC
.
x
-
r23
.
x
*
r23
.
y
*
dsindC
.
y
-
r23
.
x
*
r23
.
z
*
dsindC
.
z
);
f1
.
y
=
K
*
((
r23
.
z
*
r23
.
z
+
r23
.
x
*
r23
.
x
)
*
dsindC
.
y
-
r23
.
y
*
r23
.
z
*
dsindC
.
z
-
r23
.
y
*
r23
.
x
*
dsindC
.
x
);
f1
.
z
=
K
*
((
r23
.
x
*
r23
.
x
+
r23
.
y
*
r23
.
y
)
*
dsindC
.
z
-
r23
.
z
*
r23
.
x
*
dsindC
.
x
-
r23
.
z
*
r23
.
y
*
dsindC
.
y
);
f3
=
cvm
::
rvector
::
outer
(
dsindB
,
r23
);
f3
*=
K
;
f2
.
x
=
K
*
(
-
(
r23
.
y
*
r12
.
y
+
r23
.
z
*
r12
.
z
)
*
dsindC
.
x
+
(
2.0
*
r23
.
x
*
r12
.
y
-
r12
.
x
*
r23
.
y
)
*
dsindC
.
y
+
(
2.0
*
r23
.
x
*
r12
.
z
-
r12
.
x
*
r23
.
z
)
*
dsindC
.
z
+
dsindB
.
z
*
r34
.
y
-
dsindB
.
y
*
r34
.
z
);
f2
.
y
=
K
*
(
-
(
r23
.
z
*
r12
.
z
+
r23
.
x
*
r12
.
x
)
*
dsindC
.
y
+
(
2.0
*
r23
.
y
*
r12
.
z
-
r12
.
y
*
r23
.
z
)
*
dsindC
.
z
+
(
2.0
*
r23
.
y
*
r12
.
x
-
r12
.
y
*
r23
.
x
)
*
dsindC
.
x
+
dsindB
.
x
*
r34
.
z
-
dsindB
.
z
*
r34
.
x
);
f2
.
z
=
K
*
(
-
(
r23
.
x
*
r12
.
x
+
r23
.
y
*
r12
.
y
)
*
dsindC
.
z
+
(
2.0
*
r23
.
z
*
r12
.
x
-
r12
.
z
*
r23
.
x
)
*
dsindC
.
x
+
(
2.0
*
r23
.
z
*
r12
.
y
-
r12
.
z
*
r23
.
y
)
*
dsindC
.
y
+
dsindB
.
y
*
r34
.
x
-
dsindB
.
x
*
r34
.
y
);
}
for
(
size_t
i
=
0
;
i
<
group1
.
size
();
i
++
)
group1
[
i
].
grad
=
(
group1
[
i
].
mass
/
group1
.
total_mass
)
*
(
-
f1
);
for
(
size_t
i
=
0
;
i
<
group2
.
size
();
i
++
)
group2
[
i
].
grad
=
(
group2
[
i
].
mass
/
group2
.
total_mass
)
*
(
-
f2
+
f1
);
for
(
size_t
i
=
0
;
i
<
group3
.
size
();
i
++
)
group3
[
i
].
grad
=
(
group3
[
i
].
mass
/
group3
.
total_mass
)
*
(
-
f3
+
f2
);
for
(
size_t
i
=
0
;
i
<
group4
.
size
();
i
++
)
group4
[
i
].
grad
=
(
group4
[
i
].
mass
/
group4
.
total_mass
)
*
(
f3
);
}
void
colvar
::
dihedral
::
calc_force_invgrads
()
{
cvm
::
rvector
const
u12
=
r12
.
unit
();
cvm
::
rvector
const
u23
=
r23
.
unit
();
cvm
::
rvector
const
u34
=
r34
.
unit
();
cvm
::
real
const
d12
=
r12
.
norm
();
cvm
::
real
const
d34
=
r34
.
norm
();
cvm
::
rvector
const
cross1
=
(
cvm
::
rvector
::
outer
(
u23
,
u12
)).
unit
();
cvm
::
rvector
const
cross4
=
(
cvm
::
rvector
::
outer
(
u23
,
u34
)).
unit
();
cvm
::
real
const
dot1
=
u23
*
u12
;
cvm
::
real
const
dot4
=
u23
*
u34
;
cvm
::
real
const
fact1
=
d12
*
std
::
sqrt
(
1.0
-
dot1
*
dot1
);
cvm
::
real
const
fact4
=
d34
*
std
::
sqrt
(
1.0
-
dot4
*
dot4
);
group1
.
read_system_forces
();
if
(
b_1site_force
)
{
// This is only measuring the force on group 1
ft
.
real_value
=
PI
/
180.0
*
fact1
*
(
cross1
*
group1
.
system_force
());
}
else
{
// Default case: use groups 1 and 4
group4
.
read_system_forces
();
ft
.
real_value
=
PI
/
180.0
*
0.5
*
(
fact1
*
(
cross1
*
group1
.
system_force
())
+
fact4
*
(
cross4
*
group4
.
system_force
()));
}
}
void
colvar
::
dihedral
::
calc_Jacobian_derivative
()
{
// With this choice of inverse gradient ("internal coordinates"), Jacobian correction is 0
jd
=
0.0
;
}
void
colvar
::
dihedral
::
apply_force
(
colvarvalue
const
&
force
)
{
if
(
!
group1
.
noforce
)
group1
.
apply_colvar_force
(
force
.
real_value
);
if
(
!
group2
.
noforce
)
group2
.
apply_colvar_force
(
force
.
real_value
);
if
(
!
group3
.
noforce
)
group3
.
apply_colvar_force
(
force
.
real_value
);
if
(
!
group4
.
noforce
)
group4
.
apply_colvar_force
(
force
.
real_value
);
}
Event Timeline
Log In to Comment