Page MenuHomec4science

atom_vec_cuda.cu
No OneTemporary

File Metadata

Created
Thu, Oct 3, 00:18

atom_vec_cuda.cu

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
Original Version:
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
See the README file in the top-level LAMMPS directory.
-----------------------------------------------------------------------
USER-CUDA Package and associated modifications:
https://sourceforge.net/projects/lammpscuda/
Christian Trott, christian.trott@tu-ilmenau.de
Lars Winterfeld, lars.winterfeld@tu-ilmenau.de
Theoretical Physics II, University of Technology Ilmenau, Germany
See the README file in the USER-CUDA directory.
This software is distributed under the GNU General Public License.
------------------------------------------------------------------------- */
#include <stdio.h>
#define MY_PREFIX atom_vec_cuda
#include "cuda_shared.h"
#include "cuda_common.h"
#include "cuda_wrapper_cu.h"
#include "crm_cuda_utils.cu"
#include "atom_vec_cuda_kernel.cu"
int AtomVecCuda_CountDataItems(unsigned int data_mask)
{
int n=0;
if(data_mask & X_MASK) n+=3;
if(data_mask & V_MASK) n+=3;
if(data_mask & F_MASK) n+=3;
if(data_mask & TAG_MASK) n++;
if(data_mask & TYPE_MASK) n++;
if(data_mask & MASK_MASK) n++;
if(data_mask & IMAGE_MASK) n++;
if(data_mask & Q_MASK) n++;
if(data_mask & MOLECULE_MASK) n++;
if(data_mask & RMASS_MASK) n++;
if(data_mask & RADIUS_MASK) n++;
if(data_mask & DENSITY_MASK) n++;
if(data_mask & OMEGA_MASK) n+=3;
if(data_mask & TORQUE_MASK) n++;
//if(data_mask & NSPECIAL_MASK) n+=3;
return n;
}
void Cuda_AtomVecCuda_UpdateBuffer(cuda_shared_data* sdata,int size)
{
if(sdata->buffersize<size)
{
MYDBG(printf("Cuda_AtomVecCuda Resizing Buffer at %p with %i kB to\n",sdata->buffer,sdata->buffersize);)
CudaWrapper_FreeCudaData(sdata->buffer,sdata->buffersize);
sdata->buffer = CudaWrapper_AllocCudaData(size);
sdata->buffersize=size;
sdata->buffer_new++;
MYDBG(printf("New buffer at %p with %i kB\n",sdata->buffer,sdata->buffersize);)
}
cudaMemcpyToSymbol(MY_CONST(buffer), & sdata->buffer, sizeof(int*) );
}
template <const unsigned int data_mask>
void Cuda_AtomVecCuda_UpdateNmax(cuda_shared_data* sdata)
{
cudaMemcpyToSymbol(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) );
cudaMemcpyToSymbol(MY_CONST(nmax) , & sdata->atom.nmax , sizeof(int) );
cudaMemcpyToSymbol(MY_CONST(x) , & sdata->atom.x .dev_data, sizeof(X_FLOAT*) );
cudaMemcpyToSymbol(MY_CONST(v) , & sdata->atom.v .dev_data, sizeof(V_FLOAT*) );
cudaMemcpyToSymbol(MY_CONST(f) , & sdata->atom.f .dev_data, sizeof(F_FLOAT*) );
cudaMemcpyToSymbol(MY_CONST(tag) , & sdata->atom.tag .dev_data, sizeof(int*) );
cudaMemcpyToSymbol(MY_CONST(type) , & sdata->atom.type .dev_data, sizeof(int*) );
cudaMemcpyToSymbol(MY_CONST(mask) , & sdata->atom.mask .dev_data, sizeof(int*) );
cudaMemcpyToSymbol(MY_CONST(image) , & sdata->atom.image.dev_data, sizeof(int*) );
if(data_mask & Q_MASK) cudaMemcpyToSymbolAsync(MY_CONST(q) , & sdata->atom.q .dev_data, sizeof(F_FLOAT*) );
if(data_mask & MOLECULE_MASK) cudaMemcpyToSymbolAsync(MY_CONST(molecule) , & sdata->atom.molecule.dev_data, sizeof(int*) );
if(data_mask & RADIUS_MASK) cudaMemcpyToSymbolAsync(MY_CONST(radius) , & sdata->atom.radius.dev_data, sizeof(int*) );
if(data_mask & DENSITY_MASK) cudaMemcpyToSymbolAsync(MY_CONST(density) , & sdata->atom.density.dev_data, sizeof(int*) );
if(data_mask & RMASS_MASK) cudaMemcpyToSymbolAsync(MY_CONST(rmass) , & sdata->atom.rmass.dev_data, sizeof(int*) );
if(data_mask & OMEGA_MASK) cudaMemcpyToSymbolAsync(MY_CONST(omega) , & sdata->atom.omega.dev_data, sizeof(int*) );
//if(data_mask & NSPECIAL_MASK) cudaMemcpyToSymbol(MY_CONST(nspecial) , & sdata->atom.nspecial.dev_data, sizeof(int*) );
cudaMemcpyToSymbol(MY_CONST(flag) , & sdata->flag, sizeof(int*) );
}
template <const unsigned int data_mask>
void Cuda_AtomVecCuda_Init(cuda_shared_data* sdata)
{
MYDBG( printf("# CUDA: Cuda_AtomVecCuda_Init ... start\n"); )
if(sdata->atom.update_nmax)
Cuda_AtomVecCuda_UpdateNmax<data_mask>(sdata);
if(sdata->atom.update_nlocal)
cudaMemcpyToSymbolAsync(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) );
MYDBG( printf("# CUDA: Cuda_AtomVecCuda_Init ... post Nmax\n"); )
cudaMemcpyToSymbolAsync(MY_CONST(prd) , sdata->domain.prd, 3*sizeof(X_FLOAT));
cudaMemcpyToSymbolAsync(MY_CONST(sublo) , & sdata->domain.sublo, 3*sizeof(X_FLOAT) );
cudaMemcpyToSymbolAsync(MY_CONST(subhi) , & sdata->domain.subhi, 3*sizeof(X_FLOAT) );
cudaMemcpyToSymbolAsync(MY_CONST(flag) , & sdata->flag, sizeof(int*) );
cudaThreadSynchronize();
MYDBG( printf("# CUDA: Cuda_AtomVecCuda_Init ... end\n"); )
}
template <const unsigned int data_mask>
int Cuda_AtomVecCuda_PackComm(cuda_shared_data* sdata,int n,int iswap,void* buf_send,int* pbc,int pbc_flag)
{
timespec time1,time2;
if(sdata->atom.update_nmax)
Cuda_AtomVecCuda_UpdateNmax<data_mask>(sdata);
if(sdata->atom.update_nlocal)
cudaMemcpyToSymbolAsync(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) );
int n_data_items=AtomVecCuda_CountDataItems(data_mask);
int size=(n*n_data_items)*sizeof(X_FLOAT);
if(sdata->buffer_new or (size>sdata->buffersize))
Cuda_AtomVecCuda_UpdateBuffer(sdata,size);
X_FLOAT dx=0.0;
X_FLOAT dy=0.0;
X_FLOAT dz=0.0;
if (pbc_flag != 0) {
if (sdata->domain.triclinic == 0) {
dx = pbc[0]*sdata->domain.prd[0];
dy = pbc[1]*sdata->domain.prd[1];
dz = pbc[2]*sdata->domain.prd[2];
} else {
dx = pbc[0]*sdata->domain.prd[0] + pbc[5]*sdata->domain.xy + pbc[4]*sdata->domain.xz;
dy = pbc[1]*sdata->domain.prd[1] + pbc[3]*sdata->domain.yz;
dz = pbc[2]*sdata->domain.prd[2];
}}
int3 layout=getgrid(n);
dim3 threads(layout.z, 1, 1);
dim3 grid(layout.x, layout.y, 1);
if(sdata->atom.nlocal>0)
{
cudaMemset( sdata->flag,0,sizeof(int));
clock_gettime(CLOCK_REALTIME,&time1);
void* buf=sdata->overlap_comm?sdata->comm.buf_send_dev[iswap]:sdata->buffer;
Cuda_AtomVecCuda_PackComm_Kernel<data_mask><<<grid, threads,0>>>((int*) sdata->comm.sendlist.dev_data,n
,sdata->comm.maxlistlength,iswap,dx,dy,dz,buf);
cudaThreadSynchronize();
clock_gettime(CLOCK_REALTIME,&time2);
sdata->cuda_timings.comm_forward_kernel_pack+=
time2.tv_sec-time1.tv_sec+1.0*(time2.tv_nsec-time1.tv_nsec)/1000000000;
CUT_CHECK_ERROR("Cuda_AtomVecCuda_PackComm: Kernel execution failed");
if(not sdata->overlap_comm)
cudaMemcpy(buf_send, sdata->buffer, n*n_data_items*sizeof(X_FLOAT), cudaMemcpyDeviceToHost);
//cudaMemcpy(buf_send, sdata->comm.buf_send_dev[iswap], n*3*sizeof(X_FLOAT), cudaMemcpyDeviceToHost);
clock_gettime(CLOCK_REALTIME,&time1);
sdata->cuda_timings.comm_forward_download+=
time1.tv_sec-time2.tv_sec+1.0*(time1.tv_nsec-time2.tv_nsec)/1000000000;
int aflag;
cudaMemcpy(&aflag, sdata->flag, sizeof(int), cudaMemcpyDeviceToHost);
if(aflag!=0) printf("aflag PackComm: %i\n",aflag);
CUT_CHECK_ERROR("Cuda_AtomVecCuda_PackComm: Kernel execution failed");
}
return n_data_items*n;
}
template <const unsigned int data_mask>
int Cuda_AtomVecCuda_PackComm_Self(cuda_shared_data* sdata,int n,int iswap,int first,int* pbc,int pbc_flag)
{
MYDBG(printf(" # CUDA: AtomVecCuda_PackComm_Self\n");)
timespec time1,time2;
if(sdata->atom.update_nmax)
Cuda_AtomVecCuda_UpdateNmax<data_mask>(sdata);
if(sdata->atom.update_nlocal)
cudaMemcpyToSymbol(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) );
int n_data_items=AtomVecCuda_CountDataItems(data_mask);
int size=(n*n_data_items)*sizeof(X_FLOAT);
if(sdata->buffer_new or (size>sdata->buffersize))
Cuda_AtomVecCuda_UpdateBuffer(sdata,size);
static int count=-1;
count++;
X_FLOAT dx=0.0;
X_FLOAT dy=0.0;
X_FLOAT dz=0.0;
if (pbc_flag != 0) {
if (sdata->domain.triclinic == 0) {
dx = pbc[0]*sdata->domain.prd[0];
dy = pbc[1]*sdata->domain.prd[1];
dz = pbc[2]*sdata->domain.prd[2];
} else {
dx = pbc[0]*sdata->domain.prd[0] + pbc[5]*sdata->domain.xy + pbc[4]*sdata->domain.xz;
dy = pbc[1]*sdata->domain.prd[1] + pbc[3]*sdata->domain.yz;
dz = pbc[2]*sdata->domain.prd[2];
}}
int3 layout=getgrid(n);
dim3 threads(layout.z, 1, 1);
dim3 grid(layout.x, layout.y, 1);
if(sdata->atom.nlocal>0)
{
clock_gettime(CLOCK_REALTIME,&time1);
CUT_CHECK_ERROR("Cuda_AtomVecCuda_PackComm_Self:Pre Kernel execution failed");
Cuda_AtomVecCuda_PackComm_Self_Kernel<data_mask><<<grid, threads,0>>>((int*) sdata->comm.sendlist.dev_data,n,sdata->comm.maxlistlength,iswap,dx,dy,dz,first);
cudaThreadSynchronize();
clock_gettime(CLOCK_REALTIME,&time2);
sdata->cuda_timings.comm_forward_kernel_self+=
time2.tv_sec-time1.tv_sec+1.0*(time2.tv_nsec-time1.tv_nsec)/1000000000;
CUT_CHECK_ERROR("Cuda_AtomVecCuda_PackComm_Self: Kernel execution failed");
}
return n_data_items*n;
}
template <const unsigned int data_mask>
void Cuda_AtomVecCuda_UnpackComm(cuda_shared_data* sdata,int n,int first,void* buf_recv,int iswap)
{
timespec time1,time2;
if(sdata->atom.update_nmax)
Cuda_AtomVecCuda_UpdateNmax<data_mask>(sdata);
if(sdata->atom.update_nlocal)
cudaMemcpyToSymbol(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) );
int n_data_items=AtomVecCuda_CountDataItems(data_mask);
int size=(n*n_data_items)*sizeof(X_FLOAT);
if(sdata->buffer_new or (size>sdata->buffersize))
Cuda_AtomVecCuda_UpdateBuffer(sdata,size);
int3 layout=getgrid(n);
dim3 threads(layout.z, 1, 1);
dim3 grid(layout.x, layout.y, 1);
if(sdata->atom.nlocal>0)
{
clock_gettime(CLOCK_REALTIME,&time1);
if(not sdata->overlap_comm||iswap<0)
cudaMemcpy(sdata->buffer,(void*)buf_recv, n_data_items*n*sizeof(X_FLOAT), cudaMemcpyHostToDevice);
clock_gettime(CLOCK_REALTIME,&time2);
sdata->cuda_timings.comm_forward_upload+=
time2.tv_sec-time1.tv_sec+1.0*(time2.tv_nsec-time1.tv_nsec)/1000000000;
void* buf=(sdata->overlap_comm&&iswap>=0)?sdata->comm.buf_recv_dev[iswap]:sdata->buffer;
Cuda_AtomVecCuda_UnpackComm_Kernel<data_mask><<<grid, threads,0>>>(n,first,buf);
cudaThreadSynchronize();
clock_gettime(CLOCK_REALTIME,&time1);
sdata->cuda_timings.comm_forward_kernel_unpack+=
time1.tv_sec-time2.tv_sec+1.0*(time1.tv_nsec-time2.tv_nsec)/1000000000;
CUT_CHECK_ERROR("Cuda_AtomVecCuda_UnpackComm: Kernel execution failed");
}
}
template <const unsigned int data_mask>
int Cuda_AtomVecCuda_PackExchangeList(cuda_shared_data* sdata,int n,int dim,void* buf_send)
{
MYDBG( printf("# CUDA: Cuda_AtomVecCuda_PackExchangeList ... start dim %i \n",dim); )
CUT_CHECK_ERROR("Cuda_AtomVecCuda_PackExchangeList: pre Kernel execution failed");
cudaMemcpyToSymbol(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) );
Cuda_AtomVecCuda_Init<data_mask>(sdata);
int size=n*sizeof(double);
if(sdata->buffer_new or (size>sdata->buffersize))
Cuda_AtomVecCuda_UpdateBuffer(sdata,size);
cudaMemset((int*) (sdata->buffer),0,sizeof(int));
int3 layout=getgrid(sdata->atom.nlocal,sizeof(int),256,true);
dim3 threads(layout.z, 1, 1);
dim3 grid(layout.x, layout.y, 1);
timespec time1,time2;
clock_gettime(CLOCK_REALTIME,&time1);
Cuda_AtomVecCuda_PackExchangeList_Kernel<<<grid, threads,(threads.x+1)*sizeof(int)>>>(n-1,dim);
cudaThreadSynchronize();
CUT_CHECK_ERROR("Cuda_AtomVecCuda_PackExchangeList: Kernel execution failed");
clock_gettime(CLOCK_REALTIME,&time2);
sdata->cuda_timings.comm_exchange_kernel_pack+=
time2.tv_sec-time1.tv_sec+1.0*(time2.tv_nsec-time1.tv_nsec)/1000000000;
cudaMemcpy(buf_send, sdata->buffer, sizeof(double), cudaMemcpyDeviceToHost);
int return_value = ((int*) buf_send)[0];
if(n>1+return_value)
cudaMemcpy(buf_send, sdata->buffer, (1+return_value)*sizeof(double), cudaMemcpyDeviceToHost);
CUT_CHECK_ERROR("Cuda_AtomVecCuda_PackExchangeList: return copy failed");
clock_gettime(CLOCK_REALTIME,&time1);
sdata->cuda_timings.comm_exchange_download+=
time1.tv_sec-time2.tv_sec+1.0*(time1.tv_nsec-time2.tv_nsec)/1000000000;
MYDBG( printf("# CUDA: Cuda_AtomVecCuda_PackExchangeList ... done\n"); )
return return_value;
}
template <const unsigned int data_mask>
int Cuda_AtomVecCuda_PackExchange(cuda_shared_data* sdata,int nsend,void* buf_send,void* copylist)
{
MYDBG( printf("# CUDA: Cuda_AtomVecCuda_PackExchange ... start \n"); )
if(sdata->atom.update_nmax)
Cuda_AtomVecCuda_UpdateNmax<data_mask>(sdata);
//if(sdata->atom.update_nlocal)
cudaMemcpyToSymbol(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) );
int n_data_items=AtomVecCuda_CountDataItems(data_mask)+1;
int size=(nsend*n_data_items+1)*sizeof(double);
if(sdata->buffer_new or (size>sdata->buffersize))
Cuda_AtomVecCuda_UpdateBuffer(sdata,size);
cudaMemset((int*) (sdata->buffer),0,sizeof(int));
int3 layout=getgrid(nsend,0);
dim3 threads(layout.z, 1, 1);
dim3 grid(layout.x, layout.y, 1);
timespec time1,time2;
clock_gettime(CLOCK_REALTIME,&time1);
Cuda_AtomVecCuda_PackExchange_Kernel<data_mask><<<grid, threads,0>>>(nsend,(int*) copylist);
cudaThreadSynchronize();
CUT_CHECK_ERROR("Cuda_AtomVecCuda_PackExchange: Kernel execution failed");
clock_gettime(CLOCK_REALTIME,&time2);
sdata->cuda_timings.comm_exchange_kernel_pack+=
time2.tv_sec-time1.tv_sec+1.0*(time2.tv_nsec-time1.tv_nsec)/1000000000;
cudaMemcpy(buf_send, sdata->buffer, size, cudaMemcpyDeviceToHost);
clock_gettime(CLOCK_REALTIME,&time1);
sdata->cuda_timings.comm_exchange_download+=
time1.tv_sec-time2.tv_sec+1.0*(time1.tv_nsec-time2.tv_nsec)/1000000000;
MYDBG( printf("# CUDA: Cuda_AtomVecCuda_PackExchange ... done\n"); )
return nsend*n_data_items+1;
}
template <const unsigned int data_mask>
int Cuda_AtomVecCuda_UnpackExchange(cuda_shared_data* sdata,int nsend,void* buf_send,void* copylist)
{
Cuda_AtomVecCuda_UpdateNmax<data_mask>(sdata);
cudaMemcpyToSymbol(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) );
int n_data_items=AtomVecCuda_CountDataItems(data_mask)+1;
int size=(nsend*n_data_items+1)*sizeof(double);
if(sdata->buffer_new or (size>sdata->buffersize))
Cuda_AtomVecCuda_UpdateBuffer(sdata,size);
cudaMemcpyToSymbol(MY_CONST(flag) , & sdata->flag, sizeof(int*) );
cudaMemset((int*) (sdata->flag),0,sizeof(int));
if(nsend)
{
int3 layout=getgrid(nsend,0);
dim3 threads(layout.z, 1, 1);
dim3 grid(layout.x, layout.y, 1);
if(sdata->atom.nlocal>0)
{
timespec time1,time2;
clock_gettime(CLOCK_REALTIME,&time1);
cudaMemcpy(sdata->buffer,buf_send , size, cudaMemcpyHostToDevice);
clock_gettime(CLOCK_REALTIME,&time2);
sdata->cuda_timings.comm_exchange_upload+=
time2.tv_sec-time1.tv_sec+1.0*(time2.tv_nsec-time1.tv_nsec)/1000000000;
Cuda_AtomVecCuda_UnpackExchange_Kernel<data_mask><<<grid, threads,0>>>(sdata->exchange_dim,nsend,(int*) copylist);
cudaThreadSynchronize();
clock_gettime(CLOCK_REALTIME,&time1);
sdata->cuda_timings.comm_exchange_kernel_unpack+=
time1.tv_sec-time2.tv_sec+1.0*(time1.tv_nsec-time2.tv_nsec)/1000000000;
CUT_CHECK_ERROR("Cuda_AtomVecCuda_UnpackExchange: Kernel execution failed");
}
}
int naccept;
cudaMemcpy((void*)&naccept, sdata->flag, sizeof(int), cudaMemcpyDeviceToHost);
return naccept;
}
template <const unsigned int data_mask>
int Cuda_AtomVecCuda_PackBorder(cuda_shared_data* sdata,int nsend,int iswap,void* buf_send,int* pbc,int pbc_flag)
{
timespec atime1,atime2;
clock_gettime(CLOCK_REALTIME,&atime1);
if(sdata->atom.update_nmax)
Cuda_AtomVecCuda_UpdateNmax<data_mask>(sdata);
if(sdata->atom.update_nlocal)
cudaMemcpyToSymbol(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) );
clock_gettime(CLOCK_REALTIME,&atime2);
sdata->cuda_timings.test1+=
atime2.tv_sec-atime1.tv_sec+1.0*(atime2.tv_nsec-atime1.tv_nsec)/1000000000;
int n_data_items=AtomVecCuda_CountDataItems(data_mask);
int size=nsend*n_data_items*sizeof(X_FLOAT);
if(sdata->buffer_new or (size>sdata->buffersize))
Cuda_AtomVecCuda_UpdateBuffer(sdata,size);
X_FLOAT dx=0.0;
X_FLOAT dy=0.0;
X_FLOAT dz=0.0;
if (pbc_flag != 0) {
if (sdata->domain.triclinic == 0) {
dx = pbc[0]*sdata->domain.prd[0];
dy = pbc[1]*sdata->domain.prd[1];
dz = pbc[2]*sdata->domain.prd[2];
} else {
dx = pbc[0];
dy = pbc[1];
dz = pbc[2];
}}
int3 layout=getgrid(nsend);
dim3 threads(layout.z, 1, 1);
dim3 grid(layout.x, layout.y, 1);
if(sdata->atom.nlocal>0)
{
timespec time1,time2;
clock_gettime(CLOCK_REALTIME,&time1);
Cuda_AtomVecCuda_PackBorder_Kernel<data_mask><<<grid, threads,0>>>((int*) sdata->comm.sendlist.dev_data,nsend,sdata->comm.maxlistlength,iswap,dx,dy,dz);
cudaThreadSynchronize();
clock_gettime(CLOCK_REALTIME,&time2);
sdata->cuda_timings.comm_border_kernel_pack+=
time2.tv_sec-time1.tv_sec+1.0*(time2.tv_nsec-time1.tv_nsec)/1000000000;
cudaMemcpy(buf_send, sdata->buffer, size, cudaMemcpyDeviceToHost);
CUT_CHECK_ERROR("Cuda_AtomVecCuda_PackBorder: Kernel execution failed");
clock_gettime(CLOCK_REALTIME,&time1);
sdata->cuda_timings.comm_border_download+=
time1.tv_sec-time2.tv_sec+1.0*(time1.tv_nsec-time2.tv_nsec)/1000000000;
}
return nsend*n_data_items;
}
template <const unsigned int data_mask>
int Cuda_AtomVecCuda_PackBorder_Self(cuda_shared_data* sdata,int n,int iswap,int first,int* pbc,int pbc_flag)
{
if(sdata->atom.update_nmax)
Cuda_AtomVecCuda_UpdateNmax<data_mask>(sdata);
if(sdata->atom.update_nlocal)
cudaMemcpyToSymbol(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) );
int n_data_items=AtomVecCuda_CountDataItems(data_mask);
int size=n*n_data_items*sizeof(X_FLOAT);
if(sdata->buffer_new or (size>sdata->buffersize))
Cuda_AtomVecCuda_UpdateBuffer(sdata,size);
X_FLOAT dx=0.0;
X_FLOAT dy=0.0;
X_FLOAT dz=0.0;
if (pbc_flag != 0) {
if (sdata->domain.triclinic == 0) {
dx = pbc[0]*sdata->domain.prd[0];
dy = pbc[1]*sdata->domain.prd[1];
dz = pbc[2]*sdata->domain.prd[2];
} else {
dx = pbc[0];
dy = pbc[1];
dz = pbc[2];
}}
int3 layout=getgrid(n);
dim3 threads(layout.z, 1, 1);
dim3 grid(layout.x, layout.y, 1);
if(sdata->atom.nlocal>0)
{
timespec time1,time2;
clock_gettime(CLOCK_REALTIME,&time1);
Cuda_AtomVecCuda_PackBorder_Self_Kernel<data_mask><<<grid, threads,0>>>((int*) sdata->comm.sendlist.dev_data,n,sdata->comm.maxlistlength,iswap,dx,dy,dz,first);
cudaThreadSynchronize();
clock_gettime(CLOCK_REALTIME,&time2);
sdata->cuda_timings.comm_border_kernel_self+=
time2.tv_sec-time1.tv_sec+1.0*(time2.tv_nsec-time1.tv_nsec)/1000000000;
CUT_CHECK_ERROR("Cuda_AtomVecCuda_PackBorder_Self: Kernel execution failed");
}
return n*n_data_items;
}
template <const unsigned int data_mask>
int Cuda_AtomVecCuda_UnpackBorder(cuda_shared_data* sdata,int n,int first,void* buf_recv)
{
timespec atime1,atime2;
clock_gettime(CLOCK_REALTIME,&atime1);
if(sdata->atom.update_nmax)
Cuda_AtomVecCuda_UpdateNmax<data_mask>(sdata);
if(sdata->atom.update_nlocal)
cudaMemcpyToSymbol(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) );
clock_gettime(CLOCK_REALTIME,&atime2);
sdata->cuda_timings.test1+=
atime2.tv_sec-atime1.tv_sec+1.0*(atime2.tv_nsec-atime1.tv_nsec)/1000000000;
int n_data_items=AtomVecCuda_CountDataItems(data_mask);
int size=n*n_data_items*sizeof(X_FLOAT);
if(sdata->buffer_new or (size>sdata->buffersize))
Cuda_AtomVecCuda_UpdateBuffer(sdata,size);
int3 layout=getgrid(n);
dim3 threads(layout.z, 1, 1);
dim3 grid(layout.x, layout.y, 1);
if(sdata->atom.nlocal>0)
{
timespec time1,time2;
clock_gettime(CLOCK_REALTIME,&time1);
cudaMemset((int*) (sdata->flag),0,sizeof(int));
cudaMemcpy(sdata->buffer,(void*)buf_recv, size, cudaMemcpyHostToDevice);
clock_gettime(CLOCK_REALTIME,&time2);
sdata->cuda_timings.comm_border_upload+=
time2.tv_sec-time1.tv_sec+1.0*(time2.tv_nsec-time1.tv_nsec)/1000000000;
Cuda_AtomVecCuda_UnpackBorder_Kernel<data_mask><<<grid, threads,0>>>(n,first);
cudaThreadSynchronize();
clock_gettime(CLOCK_REALTIME,&time1);
sdata->cuda_timings.comm_border_kernel_unpack+=
time1.tv_sec-time2.tv_sec+1.0*(time1.tv_nsec-time2.tv_nsec)/1000000000;
cudaMemcpy(&sdata->comm.grow_flag,sdata->flag, sizeof(int), cudaMemcpyDeviceToHost);
CUT_CHECK_ERROR("Cuda_AtomVecCuda_UnpackBorder: Kernel execution failed");
}
return sdata->comm.grow_flag;
}
#include "atom_vec_angle_cuda.cu"
#include "atom_vec_atomic_cuda.cu"
#include "atom_vec_charge_cuda.cu"
#include "atom_vec_full_cuda.cu"
//#include "atom_vec_granular_cuda.cu"

Event Timeline