Page MenuHomec4science

comm_cuda.cu
No OneTemporary

File Metadata

Created
Mon, Nov 4, 10:06

comm_cuda.cu

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
Original Version:
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
See the README file in the top-level LAMMPS directory.
-----------------------------------------------------------------------
USER-CUDA Package and associated modifications:
https://sourceforge.net/projects/lammpscuda/
Christian Trott, christian.trott@tu-ilmenau.de
Lars Winterfeld, lars.winterfeld@tu-ilmenau.de
Theoretical Physics II, University of Technology Ilmenau, Germany
See the README file in the USER-CUDA directory.
This software is distributed under the GNU General Public License.
------------------------------------------------------------------------- */
#include <stdio.h>
#define MY_PREFIX comm_cuda
#include "cuda_shared.h"
#include "cuda_common.h"
#include "crm_cuda_utils.cu"
#include "comm_cuda_cu.h"
#include "comm_cuda_kernel.cu"
#include <ctime>
void Cuda_CommCuda_UpdateBuffer(cuda_shared_data* sdata,int n)
{
int size=n*3*sizeof(X_FLOAT);
if(sdata->buffersize<size)
{
MYDBG(printf("Cuda_ComputeTempCuda Resizing Buffer at %p with %i kB to\n",sdata->buffer,sdata->buffersize);)
CudaWrapper_FreeCudaData(sdata->buffer,sdata->buffersize);
sdata->buffer = CudaWrapper_AllocCudaData(size);
sdata->buffersize=size;
sdata->buffer_new++;
MYDBG(printf("New buffer at %p with %i kB\n",sdata->buffer,sdata->buffersize);)
}
cudaMemcpyToSymbol(MY_CONST(buffer), & sdata->buffer, sizeof(int*) );
}
void Cuda_CommCuda_UpdateNmax(cuda_shared_data* sdata)
{
cudaMemcpyToSymbolAsync(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) );
cudaMemcpyToSymbolAsync(MY_CONST(nmax) , & sdata->atom.nmax , sizeof(int) );
cudaMemcpyToSymbolAsync(MY_CONST(x) , & sdata->atom.x .dev_data, sizeof(X_FLOAT*) );
cudaMemcpyToSymbolAsync(MY_CONST(v) , & sdata->atom.v .dev_data, sizeof(X_FLOAT*) );
cudaMemcpyToSymbolAsync(MY_CONST(f) , & sdata->atom.f .dev_data, sizeof(F_FLOAT*) );
cudaMemcpyToSymbolAsync(MY_CONST(type) , & sdata->atom.type .dev_data, sizeof(int*) );
}
void Cuda_CommCuda_Init(cuda_shared_data* sdata)
{
Cuda_CommCuda_UpdateNmax(sdata);
int ntypesp=sdata->atom.ntypes+1;
cudaMemcpyToSymbol(MY_CONST(cuda_ntypes) , &ntypesp, sizeof(int));
cudaMemcpyToSymbol(MY_CONST(prd) , sdata->domain.prd, 3*sizeof(X_FLOAT));
cudaMemcpyToSymbol(MY_CONST(flag) , &sdata->flag, sizeof(int*));
cudaMemcpyToSymbol(MY_CONST(debugdata) , &sdata->debugdata, sizeof(int*));
}
int Cuda_CommCuda_PackComm(cuda_shared_data* sdata,int n,int iswap,void* buf_send,int* pbc,int pbc_flag)
{
timespec time1,time2;
if(sdata->atom.update_nmax)
Cuda_CommCuda_UpdateNmax(sdata);
if(sdata->atom.update_nlocal)
cudaMemcpyToSymbol(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) );
int size=n*3*sizeof(X_FLOAT);
if(sdata->buffer_new or (size>sdata->buffersize))
Cuda_CommCuda_UpdateBuffer(sdata,n);
X_FLOAT dx=0.0;
X_FLOAT dy=0.0;
X_FLOAT dz=0.0;
if (pbc_flag != 0) {
if (sdata->domain.triclinic == 0) {
dx = pbc[0]*sdata->domain.prd[0];
dy = pbc[1]*sdata->domain.prd[1];
dz = pbc[2]*sdata->domain.prd[2];
} else {
dx = pbc[0]*sdata->domain.prd[0] + pbc[5]*sdata->domain.xy + pbc[4]*sdata->domain.xz;
dy = pbc[1]*sdata->domain.prd[1] + pbc[3]*sdata->domain.yz;
dz = pbc[2]*sdata->domain.prd[2];
}}
int3 layout=getgrid(n);
dim3 threads(layout.z, 1, 1);
dim3 grid(layout.x, layout.y, 1);
if(sdata->atom.nlocal>0)
{
cudaMemset( sdata->flag,0,sizeof(int));
clock_gettime(CLOCK_REALTIME,&time1);
void* buf=sdata->overlap_comm?sdata->comm.buf_send_dev[iswap]:sdata->buffer;
Cuda_CommCuda_PackComm_Kernel<<<grid, threads,0>>>((int*) sdata->comm.sendlist.dev_data,n
,sdata->comm.maxlistlength,iswap,dx,dy,dz,buf);
cudaThreadSynchronize();
clock_gettime(CLOCK_REALTIME,&time2);
sdata->cuda_timings.comm_forward_kernel_pack+=
time2.tv_sec-time1.tv_sec+1.0*(time2.tv_nsec-time1.tv_nsec)/1000000000;
CUT_CHECK_ERROR("Cuda_CommCuda_PackComm: Kernel execution failed");
if(not sdata->overlap_comm)
cudaMemcpy(buf_send, sdata->buffer, n*3*sizeof(X_FLOAT), cudaMemcpyDeviceToHost);
//cudaMemcpy(buf_send, sdata->comm.buf_send_dev[iswap], n*3*sizeof(X_FLOAT), cudaMemcpyDeviceToHost);
clock_gettime(CLOCK_REALTIME,&time1);
sdata->cuda_timings.comm_forward_download+=
time1.tv_sec-time2.tv_sec+1.0*(time1.tv_nsec-time2.tv_nsec)/1000000000;
int aflag;
cudaMemcpy(&aflag, sdata->flag, sizeof(int), cudaMemcpyDeviceToHost);
if(aflag!=0) printf("aflag PackComm: %i\n",aflag);
CUT_CHECK_ERROR("Cuda_CommCuda_PackComm: Kernel execution failed");
}
return 3*n;
}
int Cuda_CommCuda_PackCommVel(cuda_shared_data* sdata,int n,int iswap,void* buf_send,int* pbc,int pbc_flag)
{
timespec time1,time2;
if(sdata->atom.update_nmax)
Cuda_CommCuda_UpdateNmax(sdata);
if(sdata->atom.update_nlocal)
cudaMemcpyToSymbol(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) );
int size=n*6*sizeof(X_FLOAT);
if(sdata->buffer_new or (size>sdata->buffersize))
Cuda_CommCuda_UpdateBuffer(sdata,n);
X_FLOAT dx=0.0;
X_FLOAT dy=0.0;
X_FLOAT dz=0.0;
if (pbc_flag != 0) {
if (sdata->domain.triclinic == 0) {
dx = pbc[0]*sdata->domain.prd[0];
dy = pbc[1]*sdata->domain.prd[1];
dz = pbc[2]*sdata->domain.prd[2];
} else {
dx = pbc[0]*sdata->domain.prd[0] + pbc[5]*sdata->domain.xy + pbc[4]*sdata->domain.xz;
dy = pbc[1]*sdata->domain.prd[1] + pbc[3]*sdata->domain.yz;
dz = pbc[2]*sdata->domain.prd[2];
}}
int3 layout=getgrid(n);
dim3 threads(layout.z, 1, 1);
dim3 grid(layout.x, layout.y, 1);
if(sdata->atom.nlocal>0)
{
cudaMemset( sdata->flag,0,sizeof(int));
clock_gettime(CLOCK_REALTIME,&time1);
void* buf=sdata->overlap_comm?sdata->comm.buf_send_dev[iswap]:sdata->buffer;
Cuda_CommCuda_PackComm_Kernel<<<grid, threads,0>>>((int*) sdata->comm.sendlist.dev_data,n
,sdata->comm.maxlistlength,iswap,dx,dy,dz,buf);
cudaThreadSynchronize();
clock_gettime(CLOCK_REALTIME,&time2);
sdata->cuda_timings.comm_forward_kernel_pack+=
time2.tv_sec-time1.tv_sec+1.0*(time2.tv_nsec-time1.tv_nsec)/1000000000;
CUT_CHECK_ERROR("Cuda_CommCuda_PackComm: Kernel execution failed");
if(not sdata->overlap_comm)
cudaMemcpy(buf_send, sdata->buffer, n*6*sizeof(X_FLOAT), cudaMemcpyDeviceToHost);
//cudaMemcpy(buf_send, sdata->comm.buf_send_dev[iswap], n*3*sizeof(X_FLOAT), cudaMemcpyDeviceToHost);
clock_gettime(CLOCK_REALTIME,&time1);
sdata->cuda_timings.comm_forward_download+=
time1.tv_sec-time2.tv_sec+1.0*(time1.tv_nsec-time2.tv_nsec)/1000000000;
int aflag;
cudaMemcpy(&aflag, sdata->flag, sizeof(int), cudaMemcpyDeviceToHost);
if(aflag!=0) printf("aflag PackComm: %i\n",aflag);
CUT_CHECK_ERROR("Cuda_CommCuda_PackComm: Kernel execution failed");
}
return 6*n;
}
int Cuda_CommCuda_PackComm_Self(cuda_shared_data* sdata,int n,int iswap,int first,int* pbc,int pbc_flag)
{
MYDBG(printf(" # CUDA: CommCuda_PackComm_Self\n");)
timespec time1,time2;
if(sdata->atom.update_nmax)
Cuda_CommCuda_UpdateNmax(sdata);
if(sdata->atom.update_nlocal)
cudaMemcpyToSymbol(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) );
int size=n*3*sizeof(X_FLOAT);
if(sdata->buffer_new or (size>sdata->buffersize))
Cuda_CommCuda_UpdateBuffer(sdata,n);
static int count=-1;
count++;
X_FLOAT dx=0.0;
X_FLOAT dy=0.0;
X_FLOAT dz=0.0;
if (pbc_flag != 0) {
if (sdata->domain.triclinic == 0) {
dx = pbc[0]*sdata->domain.prd[0];
dy = pbc[1]*sdata->domain.prd[1];
dz = pbc[2]*sdata->domain.prd[2];
} else {
dx = pbc[0]*sdata->domain.prd[0] + pbc[5]*sdata->domain.xy + pbc[4]*sdata->domain.xz;
dy = pbc[1]*sdata->domain.prd[1] + pbc[3]*sdata->domain.yz;
dz = pbc[2]*sdata->domain.prd[2];
}}
int3 layout=getgrid(n);
dim3 threads(layout.z, 1, 1);
dim3 grid(layout.x, layout.y, 1);
if(sdata->atom.nlocal>0)
{
clock_gettime(CLOCK_REALTIME,&time1);
Cuda_CommCuda_PackComm_Self_Kernel<<<grid, threads,0>>>((int*) sdata->comm.sendlist.dev_data,n,sdata->comm.maxlistlength,iswap,dx,dy,dz,first);
cudaThreadSynchronize();
clock_gettime(CLOCK_REALTIME,&time2);
sdata->cuda_timings.comm_forward_kernel_self+=
time2.tv_sec-time1.tv_sec+1.0*(time2.tv_nsec-time1.tv_nsec)/1000000000;
CUT_CHECK_ERROR("Cuda_CommCuda_PackComm_Self: Kernel execution failed");
}
return 3*n;
}
int Cuda_CommCuda_PackCommVel_Self(cuda_shared_data* sdata,int n,int iswap,int first,int* pbc,int pbc_flag)
{
MYDBG(printf(" # CUDA: CommCuda_PackComm_Self\n");)
timespec time1,time2;
if(sdata->atom.update_nmax)
Cuda_CommCuda_UpdateNmax(sdata);
if(sdata->atom.update_nlocal)
cudaMemcpyToSymbol(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) );
int size=n*6*sizeof(X_FLOAT);
if(sdata->buffer_new or (size>sdata->buffersize))
Cuda_CommCuda_UpdateBuffer(sdata,n);
static int count=-1;
count++;
X_FLOAT dx=0.0;
X_FLOAT dy=0.0;
X_FLOAT dz=0.0;
if (pbc_flag != 0) {
if (sdata->domain.triclinic == 0) {
dx = pbc[0]*sdata->domain.prd[0];
dy = pbc[1]*sdata->domain.prd[1];
dz = pbc[2]*sdata->domain.prd[2];
} else {
dx = pbc[0]*sdata->domain.prd[0] + pbc[5]*sdata->domain.xy + pbc[4]*sdata->domain.xz;
dy = pbc[1]*sdata->domain.prd[1] + pbc[3]*sdata->domain.yz;
dz = pbc[2]*sdata->domain.prd[2];
}}
int3 layout=getgrid(n);
dim3 threads(layout.z, 1, 1);
dim3 grid(layout.x, layout.y, 1);
if(sdata->atom.nlocal>0)
{
clock_gettime(CLOCK_REALTIME,&time1);
Cuda_CommCuda_PackComm_Self_Kernel<<<grid, threads,0>>>((int*) sdata->comm.sendlist.dev_data,n,sdata->comm.maxlistlength,iswap,dx,dy,dz,first);
cudaThreadSynchronize();
clock_gettime(CLOCK_REALTIME,&time2);
sdata->cuda_timings.comm_forward_kernel_self+=
time2.tv_sec-time1.tv_sec+1.0*(time2.tv_nsec-time1.tv_nsec)/1000000000;
CUT_CHECK_ERROR("Cuda_CommCuda_PackComm_Self: Kernel execution failed");
}
return 6*n;
}
void Cuda_CommCuda_UnpackComm(cuda_shared_data* sdata,int n,int first,void* buf_recv,int iswap)
{
timespec time1,time2;
if(sdata->atom.update_nmax)
Cuda_CommCuda_UpdateNmax(sdata);
if(sdata->atom.update_nlocal)
cudaMemcpyToSymbol(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) );
int size=n*3*sizeof(X_FLOAT);
if(sdata->buffer_new or (size>sdata->buffersize))
Cuda_CommCuda_UpdateBuffer(sdata,n);
int3 layout=getgrid(n);
dim3 threads(layout.z, 1, 1);
dim3 grid(layout.x, layout.y, 1);
if(sdata->atom.nlocal>0)
{
clock_gettime(CLOCK_REALTIME,&time1);
if(not sdata->overlap_comm||iswap<0)
cudaMemcpy(sdata->buffer,(void*)buf_recv, n*3*sizeof(X_FLOAT), cudaMemcpyHostToDevice);
clock_gettime(CLOCK_REALTIME,&time2);
sdata->cuda_timings.comm_forward_upload+=
time2.tv_sec-time1.tv_sec+1.0*(time2.tv_nsec-time1.tv_nsec)/1000000000;
void* buf=(sdata->overlap_comm&&iswap>=0)?sdata->comm.buf_recv_dev[iswap]:sdata->buffer;
Cuda_CommCuda_UnpackComm_Kernel<<<grid, threads,0>>>(n,first,buf);
cudaThreadSynchronize();
clock_gettime(CLOCK_REALTIME,&time1);
sdata->cuda_timings.comm_forward_kernel_unpack+=
time1.tv_sec-time2.tv_sec+1.0*(time1.tv_nsec-time2.tv_nsec)/1000000000;
CUT_CHECK_ERROR("Cuda_CommCuda_UnpackComm: Kernel execution failed");
}
}
void Cuda_CommCuda_UnpackCommVel(cuda_shared_data* sdata,int n,int first,void* buf_recv,int iswap)
{
timespec time1,time2;
if(sdata->atom.update_nmax)
Cuda_CommCuda_UpdateNmax(sdata);
if(sdata->atom.update_nlocal)
cudaMemcpyToSymbol(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) );
int size=n*6*sizeof(X_FLOAT);
if(sdata->buffer_new or (size>sdata->buffersize))
Cuda_CommCuda_UpdateBuffer(sdata,n);
int3 layout=getgrid(n);
dim3 threads(layout.z, 1, 1);
dim3 grid(layout.x, layout.y, 1);
if(sdata->atom.nlocal>0)
{
clock_gettime(CLOCK_REALTIME,&time1);
if(not sdata->overlap_comm||iswap<0)
cudaMemcpy(sdata->buffer,(void*)buf_recv, n*6*sizeof(X_FLOAT), cudaMemcpyHostToDevice);
clock_gettime(CLOCK_REALTIME,&time2);
sdata->cuda_timings.comm_forward_upload+=
time2.tv_sec-time1.tv_sec+1.0*(time2.tv_nsec-time1.tv_nsec)/1000000000;
void* buf=(sdata->overlap_comm&&iswap>=0)?sdata->comm.buf_recv_dev[iswap]:sdata->buffer;
Cuda_CommCuda_UnpackComm_Kernel<<<grid, threads,0>>>(n,first,buf);
cudaThreadSynchronize();
clock_gettime(CLOCK_REALTIME,&time1);
sdata->cuda_timings.comm_forward_kernel_unpack+=
time1.tv_sec-time2.tv_sec+1.0*(time1.tv_nsec-time2.tv_nsec)/1000000000;
CUT_CHECK_ERROR("Cuda_CommCuda_UnpackComm: Kernel execution failed");
}
}
int Cuda_CommCuda_PackReverse(cuda_shared_data* sdata,int n,int first,void* buf_send)
{
if(sdata->atom.update_nmax)
Cuda_CommCuda_UpdateNmax(sdata);
if(sdata->atom.update_nlocal)
cudaMemcpyToSymbol(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) );
int size=n*3*sizeof(F_FLOAT);
if(sdata->buffer_new or (size>sdata->buffersize))
Cuda_CommCuda_UpdateBuffer(sdata,n);
F_FLOAT* buf=(F_FLOAT*)buf_send;
F_FLOAT* f_dev=(F_FLOAT*)sdata->atom.f.dev_data;
f_dev+=first;
cudaMemcpy(buf, f_dev, n*sizeof(F_FLOAT), cudaMemcpyDeviceToHost);
buf+=n; f_dev+=sdata->atom.nmax;
cudaMemcpy(buf, f_dev, n*sizeof(F_FLOAT), cudaMemcpyDeviceToHost);
buf+=n; f_dev+=sdata->atom.nmax;
cudaMemcpy(buf, f_dev, n*sizeof(F_FLOAT), cudaMemcpyDeviceToHost);
return n*3;
}
void Cuda_CommCuda_UnpackReverse(cuda_shared_data* sdata,int n,int iswap,void* buf_recv)
{
if(sdata->atom.update_nmax)
Cuda_CommCuda_UpdateNmax(sdata);
if(sdata->atom.update_nlocal)
cudaMemcpyToSymbol(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) );
int size=n*3*sizeof(F_FLOAT);
if(sdata->buffer_new or (size>sdata->buffersize))
Cuda_CommCuda_UpdateBuffer(sdata,n);
int3 layout=getgrid(n);
dim3 threads(layout.z, 1, 1);
dim3 grid(layout.x, layout.y, 1);
if(sdata->atom.nlocal>0)
{
cudaMemcpy(sdata->buffer,buf_recv, size, cudaMemcpyHostToDevice);
Cuda_CommCuda_UnpackReverse_Kernel<<<grid, threads,0>>>((int*) sdata->comm.sendlist.dev_data,n,sdata->comm.maxlistlength,iswap);
cudaThreadSynchronize();
CUT_CHECK_ERROR("Cuda_CommCuda_UnpackReverse: Kernel execution failed");
}
}
void Cuda_CommCuda_UnpackReverse_Self(cuda_shared_data* sdata,int n,int iswap,int first)
{
if(sdata->atom.update_nmax)
Cuda_CommCuda_UpdateNmax(sdata);
if(sdata->atom.update_nlocal)
cudaMemcpyToSymbol(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) );
int size=n*3*sizeof(X_FLOAT);
if(sdata->buffer_new or (size>sdata->buffersize))
Cuda_CommCuda_UpdateBuffer(sdata,n);
int3 layout=getgrid(n);
dim3 threads(layout.z, 1, 1);
dim3 grid(layout.x, layout.y, 1);
if(sdata->atom.nlocal>0)
{
Cuda_CommCuda_UnpackReverse_Self_Kernel<<<grid, threads,0>>>((int*) sdata->comm.sendlist.dev_data,n,sdata->comm.maxlistlength,iswap,first);
cudaThreadSynchronize();
CUT_CHECK_ERROR("Cuda_CommCuda_PackReverse_Self: Kernel execution failed");
}
}
int Cuda_CommCuda_BuildSendlist(cuda_shared_data* sdata,int bordergroup,int ineed,int style,int atom_nfirst,int nfirst,int nlast,int dim,int iswap)
{
MYDBG(printf(" # CUDA: CommCuda_BuildSendlist\n");)
timespec time1,time2;
if(sdata->atom.update_nmax)
Cuda_CommCuda_UpdateNmax(sdata);
if(sdata->atom.update_nlocal)
cudaMemcpyToSymbol(MY_CONST(nlocal) , & sdata->atom.nlocal , sizeof(int) );
if(sdata->buffer_new or (80>sdata->buffersize))
Cuda_CommCuda_UpdateBuffer(sdata,10);
int n;
if (!bordergroup || ineed >= 2)
n=nlast-nfirst+1;
else
{
n=atom_nfirst;
if(nlast-sdata->atom.nlocal+1>n) n=nlast-sdata->atom.nlocal+1;
}
int3 layout=getgrid(n,0,512,true);
dim3 threads(layout.z, 1, 1);
dim3 grid(layout.x+1, layout.y, 1);
cudaMemset((int*) (sdata->buffer),0,sizeof(int));
clock_gettime(CLOCK_REALTIME,&time1);
if(style==1)
Cuda_CommCuda_BuildSendlist_Single<<<grid, threads,(threads.x+1)*sizeof(int)>>>(bordergroup, ineed, atom_nfirst, nfirst, nlast, dim, iswap,(X_FLOAT*) sdata->comm.slablo.dev_data,(X_FLOAT*) sdata->comm.slabhi.dev_data,(int*) sdata->comm.sendlist.dev_data,sdata->comm.maxlistlength);
else
Cuda_CommCuda_BuildSendlist_Multi<<<grid, threads,(threads.x+1)*sizeof(int)>>>(bordergroup, ineed, atom_nfirst, nfirst, nlast, dim, iswap,(X_FLOAT*) sdata->comm.multilo.dev_data,(X_FLOAT*) sdata->comm.multihi.dev_data,(int*) sdata->comm.sendlist.dev_data,sdata->comm.maxlistlength);
cudaThreadSynchronize();
clock_gettime(CLOCK_REALTIME,&time2);
sdata->cuda_timings.comm_border_kernel_buildlist+=
time2.tv_sec-time1.tv_sec+1.0*(time2.tv_nsec-time1.tv_nsec)/1000000000;
CUT_CHECK_ERROR("Cuda_CommCuda_BuildSendlist: Kernel execution failed");
int nsend;
cudaMemcpy(&nsend, sdata->buffer, sizeof(int), cudaMemcpyDeviceToHost);
return nsend;
}

Event Timeline