Page MenuHomec4science

BoxElemPart.hpp
No OneTemporary

File Metadata

Created
Tue, Nov 5, 09:29

BoxElemPart.hpp

/*
//@HEADER
// ************************************************************************
//
// Kokkos v. 2.0
// Copyright (2014) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact H. Carter Edwards (hcedwar@sandia.gov)
//
// ************************************************************************
//@HEADER
*/
#ifndef KOKKOS_BOXELEMPART_HPP
#define KOKKOS_BOXELEMPART_HPP
#include <utility>
#include <ostream>
#include <Kokkos_Macros.hpp>
//----------------------------------------------------------------------------
namespace Kokkos {
namespace Example {
KOKKOS_INLINE_FUNCTION
void box_intersect( size_t box[][2] ,
const size_t boxA[][2] ,
const size_t boxB[][2] )
{
for ( int i = 0 ; i < 3 ; ++i ) {
box[i][0] = boxA[i][0] > boxB[i][0] ? boxA[i][0] : boxB[i][0] ;
box[i][1] = boxA[i][1] < boxB[i][1] ? boxA[i][1] : boxB[i][1] ;
if ( box[i][0] > box[i][1] ) box[i][1] = box[i][0] ;
}
}
KOKKOS_INLINE_FUNCTION
size_t box_count( const size_t box[][2] )
{
return size_t( box[0][1] - box[0][0] ) *
size_t( box[1][1] - box[1][0] ) *
size_t( box[2][1] - box[2][0] );
}
KOKKOS_INLINE_FUNCTION
void box_ghost_layer( const size_t global_box[][2] ,
const size_t local_box[][2] ,
const size_t ghost_layer ,
size_t ghost_box[][2] )
{
for ( int i = 0 ; i < 3 ; ++i ) {
ghost_box[i][0] = global_box[i][0] + ghost_layer > local_box[i][0] ? global_box[i][0] : local_box[i][0] - ghost_layer ;
ghost_box[i][1] = global_box[i][1] < local_box[i][1] + ghost_layer ? global_box[i][1] : local_box[i][1] + ghost_layer ;
}
}
void box_partition( const size_t global_size ,
const size_t global_rank ,
const size_t global_box[][2] ,
size_t box[][2] );
} // namespace Example
} // namespace Kokkos
//----------------------------------------------------------------------------
namespace Kokkos {
namespace Example {
/** \brief Partition a box of hexahedral elements among subdomains.
*
* Nodes are ordered locally as follows:
* { owned_by[ this_process ] ,
* owned_by[ neighbor_process[0] ] ,
* owned_by[ neighbor_process[1] ] ,
* owned_by[ neighbor_process[2] ] ,
* ... };
*/
class BoxElemPart {
public:
enum Decompose { DecomposeNode , DecomposeElem };
enum ElemOrder { ElemLinear , ElemQuadratic };
bool ok() const { return m_ok ; }
BoxElemPart( const ElemOrder elem_order ,
const Decompose decompose ,
const size_t global_size ,
const size_t global_rank ,
const size_t elem_nx ,
const size_t elem_ny ,
const size_t elem_nz );
KOKKOS_INLINE_FUNCTION
size_t global_elem_count() const
{ return Kokkos::Example::box_count( m_global_elem_box ); }
KOKKOS_INLINE_FUNCTION
size_t global_node_count() const
{ return Kokkos::Example::box_count( m_global_node_box ); }
KOKKOS_INLINE_FUNCTION
size_t uses_elem_count() const
{ return Kokkos::Example::box_count( m_uses_elem_box ); }
KOKKOS_INLINE_FUNCTION
size_t owns_node_count() const
{ return Kokkos::Example::box_count( m_owns_node_box[0] ); }
KOKKOS_INLINE_FUNCTION
size_t uses_node_count() const
{ return Kokkos::Example::box_count( m_uses_node_box ); }
//----------------------------------------
KOKKOS_INLINE_FUNCTION
size_t uses_elem_offset( const size_t ix ,
const size_t iy ,
const size_t iz ) const
{
return size_t( ix - m_uses_elem_box[0][0] ) + size_t( m_uses_elem_box[0][1] - m_uses_elem_box[0][0] ) * (
size_t( iy - m_uses_elem_box[1][0] ) + size_t( m_uses_elem_box[1][1] - m_uses_elem_box[1][0] ) * (
size_t( iz - m_uses_elem_box[2][0] ) ) );
}
KOKKOS_INLINE_FUNCTION
void uses_elem_coord( size_t lid , size_t c[] ) const
{
const size_t nx = m_uses_elem_box[0][1] - m_uses_elem_box[0][0] ;
const size_t ny = m_uses_elem_box[1][1] - m_uses_elem_box[1][0] ;
c[0] = m_uses_elem_box[0][0] + lid % nx ; lid /= nx ;
c[1] = m_uses_elem_box[1][0] + lid % ny ; lid /= ny ;
c[2] = m_uses_elem_box[2][0] + lid ;
}
//----------------------------------------
KOKKOS_INLINE_FUNCTION
size_t global_coord_max( size_t axis ) const
{ return m_global_node_box[axis][1] - 1 ; }
//----------------------------------------
KOKKOS_INLINE_FUNCTION
void local_node_coord( size_t lid , size_t coord[] ) const
{
// Local id within an 'owns' block (has sentinal)
size_t j = 0 ;
while ( m_owns_node[j][1] <= lid ) { lid -= m_owns_node[j][1] ; ++j ; }
// Map to global coordinates:
const size_t nx = m_owns_node_box[j][0][1] - m_owns_node_box[j][0][0] ;
const size_t ny = m_owns_node_box[j][1][1] - m_owns_node_box[j][1][0] ;
coord[0] = m_owns_node_box[j][0][0] + lid % nx ; lid /= nx ;
coord[1] = m_owns_node_box[j][1][0] + lid % ny ; lid /= ny ;
coord[2] = m_owns_node_box[j][2][0] + lid ;
}
KOKKOS_INLINE_FUNCTION
size_t local_node_id( const size_t c[] ) const
{
// Find which 'owns' block and accumulate the offset of this block:
size_t lid = 0 ;
size_t j = 0 ;
while ( ! ( m_owns_node_box[j][0][0] <= c[0] && c[0] < m_owns_node_box[j][0][1] &&
m_owns_node_box[j][1][0] <= c[1] && c[1] < m_owns_node_box[j][1][1] &&
m_owns_node_box[j][2][0] <= c[2] && c[2] < m_owns_node_box[j][2][1] ) ) {
lid += m_owns_node[j][1] ;
++j ;
}
// Map offset to the block plus offset within the block:
return lid +
size_t( c[0] - m_owns_node_box[j][0][0] ) + size_t( m_owns_node_box[j][0][1] - m_owns_node_box[j][0][0] ) * (
size_t( c[1] - m_owns_node_box[j][1][0] ) + size_t( m_owns_node_box[j][1][1] - m_owns_node_box[j][1][0] ) * (
size_t( c[2] - m_owns_node_box[j][2][0] ) ) );
}
KOKKOS_INLINE_FUNCTION
size_t global_node_id( const size_t c[] ) const
{
return size_t( c[0] - m_global_node_box[0][0] ) + size_t( m_global_node_box[0][1] - m_global_node_box[0][0] ) * (
size_t( c[1] - m_global_node_box[1][0] ) + size_t( m_global_node_box[1][1] - m_global_node_box[1][0] ) * (
size_t( c[2] - m_global_node_box[2][0] ) ) );
}
//----------------------------------------
KOKKOS_INLINE_FUNCTION
size_t recv_node_msg_count() const { return m_owns_node_count - 1 ; }
KOKKOS_INLINE_FUNCTION
size_t recv_node_rank( size_t msg ) const { return m_owns_node[msg+1][0] ; }
KOKKOS_INLINE_FUNCTION
size_t recv_node_count( size_t msg ) const { return m_owns_node[msg+1][1] ; }
//----------------------------------------
KOKKOS_INLINE_FUNCTION
size_t send_node_msg_count() const { return m_send_node_count ; }
KOKKOS_INLINE_FUNCTION
size_t send_node_rank( size_t msg ) const { return m_send_node[msg][0] ; }
KOKKOS_INLINE_FUNCTION
size_t send_node_count( size_t msg ) const { return m_send_node[msg][1] ; }
KOKKOS_INLINE_FUNCTION
size_t send_node_id_count() const
{
size_t count = 0 ;
for ( size_t i = 0 ; i < m_send_node_count ; ++i ) {
count += m_send_node[i][1] ;
}
return count ;
}
KOKKOS_INLINE_FUNCTION
size_t send_node_id( size_t item ) const
{
// Find which send list this send item is in:
size_t j = 0 ;
while ( m_send_node[j][1] <= item ) { item -= m_send_node[j][1] ; ++j ; }
// Map to global coordinate:
const size_t nx = m_send_node_box[j][0][1] - m_send_node_box[j][0][0] ;
const size_t ny = m_send_node_box[j][1][1] - m_send_node_box[j][1][0] ;
size_t c[3] ;
c[0] = m_send_node_box[j][0][0] + item % nx ; item /= nx ;
c[1] = m_send_node_box[j][1][0] + item % ny ; item /= ny ;
c[2] = m_send_node_box[j][2][0] + item ;
// Map to local id:
return size_t( c[0] - m_owns_node_box[0][0][0] ) + size_t( m_owns_node_box[0][0][1] - m_owns_node_box[0][0][0] ) * (
size_t( c[1] - m_owns_node_box[0][1][0] ) + size_t( m_owns_node_box[0][1][1] - m_owns_node_box[0][1][0] ) * (
size_t( c[2] - m_owns_node_box[0][2][0] ) ) );
}
//----------------------------------------
void print( std::ostream & s ) const ;
private:
// Maximum number of processes in a neighborhood, including this process
enum { PROC_NEIGH_MAX = 64 };
void local( const size_t rank ,
size_t uses_elem[][2] ,
size_t owns_node[][2] ,
size_t uses_node[][2] ) const ;
size_t m_global_size ;
size_t m_global_rank ;
Decompose m_decompose ;
ElemOrder m_elem_order ;
size_t m_global_elem_box[3][2] ;
size_t m_global_node_box[3][2] ;
size_t m_uses_elem_box[3][2] ;
size_t m_uses_node_box[3][2] ;
// [ processor rank , count ]
size_t m_owns_node_box[ PROC_NEIGH_MAX ][3][2] ;
size_t m_owns_node[ PROC_NEIGH_MAX ][2] ;
size_t m_owns_node_count ;
size_t m_send_node_box[ PROC_NEIGH_MAX ][3][2] ;
size_t m_send_node[ PROC_NEIGH_MAX ][2] ;
size_t m_send_node_count ;
bool m_ok ;
};
} // namespace Example
} // namespace Kokkos
//----------------------------------------------------------------------------
#endif /* #ifndef KOKKOS_BOXELEMPART_HPP */

Event Timeline