Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90908597
dlange.f
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Nov 5, 21:10
Size
5 KB
Mime Type
text/html
Expires
Thu, Nov 7, 21:10 (2 d)
Engine
blob
Format
Raw Data
Handle
22156882
Attached To
rLAMMPS lammps
dlange.f
View Options
*>
\
brief
\
b
DLANGE
returns
the
value
of
the
1
-
norm
,
Frobenius
norm
,
infinity
-
norm
,
or
the
largest
absolute
value
of
any
element
of
a
general
rectangular
matrix
.
*
*
===========
DOCUMENTATION
===========
*
*
Online
html
documentation
available
at
*
http
:
//
www
.
netlib
.
org
/
lapack
/
explore
-
html
/
*
*>
\
htmlonly
*>
Download
DLANGE
+
dependencies
*>
<
a
href
=
"http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlange.f"
>
*>
[
TGZ
]
</
a
>
*>
<
a
href
=
"http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlange.f"
>
*>
[
ZIP
]
</
a
>
*>
<
a
href
=
"http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlange.f"
>
*>
[
TXT
]
</
a
>
*>
\
endhtmlonly
*
*
Definition
:
*
===========
*
*
DOUBLE PRECISION
FUNCTION
DLANGE
(
NORM
,
M
,
N
,
A
,
LDA
,
WORK
)
*
*
..
Scalar
Arguments
..
*
CHARACTER
NORM
*
INTEGER
LDA
,
M
,
N
*
..
*
..
Array
Arguments
..
*
DOUBLE PRECISION
A
(
LDA
,
*
),
WORK
(
*
)
*
..
*
*
*>
\
par
Purpose
:
*
=============
*>
*>
\
verbatim
*>
*>
DLANGE
returns
the
value
of
the
one
norm
,
or
the
Frobenius
norm
,
or
*>
the
infinity
norm
,
or
the
element
of
largest
absolute
value
of
a
*>
real
matrix
A
.
*>
\
endverbatim
*>
*>
\
return
DLANGE
*>
\
verbatim
*>
*>
DLANGE
=
(
max
(
abs
(
A
(
i
,
j
))),
NORM
=
'M'
or
'm'
*>
(
*>
(
norm1
(
A
),
NORM
=
'1'
,
'O'
or
'o'
*>
(
*>
(
normI
(
A
),
NORM
=
'I'
or
'i'
*>
(
*>
(
normF
(
A
),
NORM
=
'F'
,
'f'
,
'E'
or
'e'
*>
*>
where
norm1
denotes
the
one
norm
of
a
matrix
(
maximum
column
sum
),
*>
normI
denotes
the
infinity
norm
of
a
matrix
(
maximum
row
sum
)
and
*>
normF
denotes
the
Frobenius
norm
of
a
matrix
(
square
root
of
sum
of
*>
squares
)
.
Note
that
max
(
abs
(
A
(
i
,
j
)))
is
not
a
consistent
matrix
norm
.
*>
\
endverbatim
*
*
Arguments
:
*
==========
*
*>
\
param
[
in
]
NORM
*>
\
verbatim
*>
NORM
is
CHARACTER
*
1
*>
Specifies
the
value
to
be
returned
in
DLANGE
as
described
*>
above
.
*>
\
endverbatim
*>
*>
\
param
[
in
]
M
*>
\
verbatim
*>
M
is
INTEGER
*>
The
number
of
rows
of
the
matrix
A
.
M
>=
0.
When
M
=
0
,
*>
DLANGE
is
set
to
zero
.
*>
\
endverbatim
*>
*>
\
param
[
in
]
N
*>
\
verbatim
*>
N
is
INTEGER
*>
The
number
of
columns
of
the
matrix
A
.
N
>=
0.
When
N
=
0
,
*>
DLANGE
is
set
to
zero
.
*>
\
endverbatim
*>
*>
\
param
[
in
]
A
*>
\
verbatim
*>
A
is
DOUBLE PRECISION
array
,
dimension
(
LDA
,
N
)
*>
The
m
by
n
matrix
A
.
*>
\
endverbatim
*>
*>
\
param
[
in
]
LDA
*>
\
verbatim
*>
LDA
is
INTEGER
*>
The
leading
dimension
of
the
array
A
.
LDA
>=
max
(
M
,
1
)
.
*>
\
endverbatim
*>
*>
\
param
[
out
]
WORK
*>
\
verbatim
*>
WORK
is
DOUBLE PRECISION
array
,
dimension
(
MAX
(
1
,
LWORK
)),
*>
where
LWORK
>=
M
when
NORM
=
'I'
;
otherwise
,
WORK
is
not
*>
referenced
.
*>
\
endverbatim
*
*
Authors
:
*
========
*
*>
\
author
Univ
.
of
Tennessee
*>
\
author
Univ
.
of
California
Berkeley
*>
\
author
Univ
.
of
Colorado
Denver
*>
\
author
NAG
Ltd
.
*
*>
\
date
September
2012
*
*>
\
ingroup
doubleGEauxiliary
*
*
=====================================================================
DOUBLE PRECISION
FUNCTION
DLANGE
(
NORM
,
M
,
N
,
A
,
LDA
,
WORK
)
*
*
--
LAPACK
auxiliary
routine
(
version
3.4.2
)
--
*
--
LAPACK
is
a
software
package
provided
by
Univ
.
of
Tennessee
,
--
*
--
Univ
.
of
California
Berkeley
,
Univ
.
of
Colorado
Denver
and
NAG
Ltd
..
--
*
September
2012
*
*
..
Scalar
Arguments
..
CHARACTER
NORM
INTEGER
LDA
,
M
,
N
*
..
*
..
Array
Arguments
..
DOUBLE PRECISION
A
(
LDA
,
*
),
WORK
(
*
)
*
..
*
*
=====================================================================
*
*
..
Parameters
..
DOUBLE PRECISION
ONE
,
ZERO
PARAMETER
(
ONE
=
1.0
D
+
0
,
ZERO
=
0.0
D
+
0
)
*
..
*
..
Local
Scalars
..
INTEGER
I
,
J
DOUBLE PRECISION
SCALE
,
SUM
,
VALUE
,
TEMP
*
..
*
..
External
Subroutines
..
EXTERNAL
DLASSQ
*
..
*
..
External
Functions
..
LOGICAL
LSAME
,
DISNAN
EXTERNAL
LSAME
,
DISNAN
*
..
*
..
Intrinsic
Functions
..
INTRINSIC
ABS
,
MIN
,
SQRT
*
..
*
..
Executable
Statements
..
*
IF
(
MIN
(
M
,
N
)
.EQ.
0
)
THEN
VALUE
=
ZERO
ELSE IF
(
LSAME
(
NORM
,
'M'
)
)
THEN
*
*
Find
max
(
abs
(
A
(
i
,
j
)))
.
*
VALUE
=
ZERO
DO
20
J
=
1
,
N
DO
10
I
=
1
,
M
TEMP
=
ABS
(
A
(
I
,
J
)
)
IF
(
VALUE
.LT.
TEMP
.OR.
DISNAN
(
TEMP
)
)
VALUE
=
TEMP
10
CONTINUE
20
CONTINUE
ELSE IF
(
(
LSAME
(
NORM
,
'O'
)
)
.OR.
(
NORM
.EQ.
'1'
)
)
THEN
*
*
Find
norm1
(
A
)
.
*
VALUE
=
ZERO
DO
40
J
=
1
,
N
SUM
=
ZERO
DO
30
I
=
1
,
M
SUM
=
SUM
+
ABS
(
A
(
I
,
J
)
)
30
CONTINUE
IF
(
VALUE
.LT.
SUM
.OR.
DISNAN
(
SUM
)
)
VALUE
=
SUM
40
CONTINUE
ELSE IF
(
LSAME
(
NORM
,
'I'
)
)
THEN
*
*
Find
normI
(
A
)
.
*
DO
50
I
=
1
,
M
WORK
(
I
)
=
ZERO
50
CONTINUE
DO
70
J
=
1
,
N
DO
60
I
=
1
,
M
WORK
(
I
)
=
WORK
(
I
)
+
ABS
(
A
(
I
,
J
)
)
60
CONTINUE
70
CONTINUE
VALUE
=
ZERO
DO
80
I
=
1
,
M
TEMP
=
WORK
(
I
)
IF
(
VALUE
.LT.
TEMP
.OR.
DISNAN
(
TEMP
)
)
VALUE
=
TEMP
80
CONTINUE
ELSE IF
(
(
LSAME
(
NORM
,
'F'
)
)
.OR.
(
LSAME
(
NORM
,
'E'
)
)
)
THEN
*
*
Find
normF
(
A
)
.
*
SCALE
=
ZERO
SUM
=
ONE
DO
90
J
=
1
,
N
CALL
DLASSQ
(
M
,
A
(
1
,
J
),
1
,
SCALE
,
SUM
)
90
CONTINUE
VALUE
=
SCALE
*
SQRT
(
SUM
)
END IF
*
DLANGE
=
VALUE
RETURN
*
*
End
of
DLANGE
*
END
Event Timeline
Log In to Comment