Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90383214
dlasq2.f
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Nov 1, 04:02
Size
16 KB
Mime Type
text/html
Expires
Sun, Nov 3, 04:02 (2 d)
Engine
blob
Format
Raw Data
Handle
22023137
Attached To
rLAMMPS lammps
dlasq2.f
View Options
*> \brief \b DLASQ2 computes all the eigenvalues of the symmetric positive definite tridiagonal matrix associated with the qd Array Z to high relative accuracy. Used by sbdsqr and sstegr.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLASQ2 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasq2.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasq2.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasq2.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DLASQ2( N, Z, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, N
* ..
* .. Array Arguments ..
* DOUBLE PRECISION Z( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DLASQ2 computes all the eigenvalues of the symmetric positive
*> definite tridiagonal matrix associated with the qd array Z to high
*> relative accuracy are computed to high relative accuracy, in the
*> absence of denormalization, underflow and overflow.
*>
*> To see the relation of Z to the tridiagonal matrix, let L be a
*> unit lower bidiagonal matrix with subdiagonals Z(2,4,6,,..) and
*> let U be an upper bidiagonal matrix with 1's above and diagonal
*> Z(1,3,5,,..). The tridiagonal is L*U or, if you prefer, the
*> symmetric tridiagonal to which it is similar.
*>
*> Note : DLASQ2 defines a logical variable, IEEE, which is true
*> on machines which follow ieee-754 floating-point standard in their
*> handling of infinities and NaNs, and false otherwise. This variable
*> is passed to DLASQ3.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of rows and columns in the matrix. N >= 0.
*> \endverbatim
*>
*> \param[in,out] Z
*> \verbatim
*> Z is DOUBLE PRECISION array, dimension ( 4*N )
*> On entry Z holds the qd array. On exit, entries 1 to N hold
*> the eigenvalues in decreasing order, Z( 2*N+1 ) holds the
*> trace, and Z( 2*N+2 ) holds the sum of the eigenvalues. If
*> N > 2, then Z( 2*N+3 ) holds the iteration count, Z( 2*N+4 )
*> holds NDIVS/NIN^2, and Z( 2*N+5 ) holds the percentage of
*> shifts that failed.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if the i-th argument is a scalar and had an illegal
*> value, then INFO = -i, if the i-th argument is an
*> array and the j-entry had an illegal value, then
*> INFO = -(i*100+j)
*> > 0: the algorithm failed
*> = 1, a split was marked by a positive value in E
*> = 2, current block of Z not diagonalized after 100*N
*> iterations (in inner while loop). On exit Z holds
*> a qd array with the same eigenvalues as the given Z.
*> = 3, termination criterion of outer while loop not met
*> (program created more than N unreduced blocks)
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date September 2012
*
*> \ingroup auxOTHERcomputational
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> Local Variables: I0:N0 defines a current unreduced segment of Z.
*> The shifts are accumulated in SIGMA. Iteration count is in ITER.
*> Ping-pong is controlled by PP (alternates between 0 and 1).
*> \endverbatim
*>
* =====================================================================
SUBROUTINE DLASQ2( N, Z, INFO )
*
* -- LAPACK computational routine (version 3.4.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* September 2012
*
* .. Scalar Arguments ..
INTEGER INFO, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION Z( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION CBIAS
PARAMETER ( CBIAS = 1.50D0 )
DOUBLE PRECISION ZERO, HALF, ONE, TWO, FOUR, HUNDRD
PARAMETER ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0,
$ TWO = 2.0D0, FOUR = 4.0D0, HUNDRD = 100.0D0 )
* ..
* .. Local Scalars ..
LOGICAL IEEE
INTEGER I0, I1, I4, IINFO, IPN4, ITER, IWHILA, IWHILB,
$ K, KMIN, N0, N1, NBIG, NDIV, NFAIL, PP, SPLT,
$ TTYPE
DOUBLE PRECISION D, DEE, DEEMIN, DESIG, DMIN, DMIN1, DMIN2, DN,
$ DN1, DN2, E, EMAX, EMIN, EPS, G, OLDEMN, QMAX,
$ QMIN, S, SAFMIN, SIGMA, T, TAU, TEMP, TOL,
$ TOL2, TRACE, ZMAX, TEMPE, TEMPQ
* ..
* .. External Subroutines ..
EXTERNAL DLASQ3, DLASRT, XERBLA
* ..
* .. External Functions ..
INTEGER ILAENV
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH, ILAENV
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, MAX, MIN, SQRT
* ..
* .. Executable Statements ..
*
* Test the input arguments.
* (in case DLASQ2 is not called by DLASQ1)
*
INFO = 0
EPS = DLAMCH( 'Precision' )
SAFMIN = DLAMCH( 'Safe minimum' )
TOL = EPS*HUNDRD
TOL2 = TOL**2
*
IF( N.LT.0 ) THEN
INFO = -1
CALL XERBLA( 'DLASQ2', 1 )
RETURN
ELSE IF( N.EQ.0 ) THEN
RETURN
ELSE IF( N.EQ.1 ) THEN
*
* 1-by-1 case.
*
IF( Z( 1 ).LT.ZERO ) THEN
INFO = -201
CALL XERBLA( 'DLASQ2', 2 )
END IF
RETURN
ELSE IF( N.EQ.2 ) THEN
*
* 2-by-2 case.
*
IF( Z( 2 ).LT.ZERO .OR. Z( 3 ).LT.ZERO ) THEN
INFO = -2
CALL XERBLA( 'DLASQ2', 2 )
RETURN
ELSE IF( Z( 3 ).GT.Z( 1 ) ) THEN
D = Z( 3 )
Z( 3 ) = Z( 1 )
Z( 1 ) = D
END IF
Z( 5 ) = Z( 1 ) + Z( 2 ) + Z( 3 )
IF( Z( 2 ).GT.Z( 3 )*TOL2 ) THEN
T = HALF*( ( Z( 1 )-Z( 3 ) )+Z( 2 ) )
S = Z( 3 )*( Z( 2 ) / T )
IF( S.LE.T ) THEN
S = Z( 3 )*( Z( 2 ) / ( T*( ONE+SQRT( ONE+S / T ) ) ) )
ELSE
S = Z( 3 )*( Z( 2 ) / ( T+SQRT( T )*SQRT( T+S ) ) )
END IF
T = Z( 1 ) + ( S+Z( 2 ) )
Z( 3 ) = Z( 3 )*( Z( 1 ) / T )
Z( 1 ) = T
END IF
Z( 2 ) = Z( 3 )
Z( 6 ) = Z( 2 ) + Z( 1 )
RETURN
END IF
*
* Check for negative data and compute sums of q's and e's.
*
Z( 2*N ) = ZERO
EMIN = Z( 2 )
QMAX = ZERO
ZMAX = ZERO
D = ZERO
E = ZERO
*
DO 10 K = 1, 2*( N-1 ), 2
IF( Z( K ).LT.ZERO ) THEN
INFO = -( 200+K )
CALL XERBLA( 'DLASQ2', 2 )
RETURN
ELSE IF( Z( K+1 ).LT.ZERO ) THEN
INFO = -( 200+K+1 )
CALL XERBLA( 'DLASQ2', 2 )
RETURN
END IF
D = D + Z( K )
E = E + Z( K+1 )
QMAX = MAX( QMAX, Z( K ) )
EMIN = MIN( EMIN, Z( K+1 ) )
ZMAX = MAX( QMAX, ZMAX, Z( K+1 ) )
10 CONTINUE
IF( Z( 2*N-1 ).LT.ZERO ) THEN
INFO = -( 200+2*N-1 )
CALL XERBLA( 'DLASQ2', 2 )
RETURN
END IF
D = D + Z( 2*N-1 )
QMAX = MAX( QMAX, Z( 2*N-1 ) )
ZMAX = MAX( QMAX, ZMAX )
*
* Check for diagonality.
*
IF( E.EQ.ZERO ) THEN
DO 20 K = 2, N
Z( K ) = Z( 2*K-1 )
20 CONTINUE
CALL DLASRT( 'D', N, Z, IINFO )
Z( 2*N-1 ) = D
RETURN
END IF
*
TRACE = D + E
*
* Check for zero data.
*
IF( TRACE.EQ.ZERO ) THEN
Z( 2*N-1 ) = ZERO
RETURN
END IF
*
* Check whether the machine is IEEE conformable.
*
IEEE = ILAENV( 10, 'DLASQ2', 'N', 1, 2, 3, 4 ).EQ.1 .AND.
$ ILAENV( 11, 'DLASQ2', 'N', 1, 2, 3, 4 ).EQ.1
*
* Rearrange data for locality: Z=(q1,qq1,e1,ee1,q2,qq2,e2,ee2,...).
*
DO 30 K = 2*N, 2, -2
Z( 2*K ) = ZERO
Z( 2*K-1 ) = Z( K )
Z( 2*K-2 ) = ZERO
Z( 2*K-3 ) = Z( K-1 )
30 CONTINUE
*
I0 = 1
N0 = N
*
* Reverse the qd-array, if warranted.
*
IF( CBIAS*Z( 4*I0-3 ).LT.Z( 4*N0-3 ) ) THEN
IPN4 = 4*( I0+N0 )
DO 40 I4 = 4*I0, 2*( I0+N0-1 ), 4
TEMP = Z( I4-3 )
Z( I4-3 ) = Z( IPN4-I4-3 )
Z( IPN4-I4-3 ) = TEMP
TEMP = Z( I4-1 )
Z( I4-1 ) = Z( IPN4-I4-5 )
Z( IPN4-I4-5 ) = TEMP
40 CONTINUE
END IF
*
* Initial split checking via dqd and Li's test.
*
PP = 0
*
DO 80 K = 1, 2
*
D = Z( 4*N0+PP-3 )
DO 50 I4 = 4*( N0-1 ) + PP, 4*I0 + PP, -4
IF( Z( I4-1 ).LE.TOL2*D ) THEN
Z( I4-1 ) = -ZERO
D = Z( I4-3 )
ELSE
D = Z( I4-3 )*( D / ( D+Z( I4-1 ) ) )
END IF
50 CONTINUE
*
* dqd maps Z to ZZ plus Li's test.
*
EMIN = Z( 4*I0+PP+1 )
D = Z( 4*I0+PP-3 )
DO 60 I4 = 4*I0 + PP, 4*( N0-1 ) + PP, 4
Z( I4-2*PP-2 ) = D + Z( I4-1 )
IF( Z( I4-1 ).LE.TOL2*D ) THEN
Z( I4-1 ) = -ZERO
Z( I4-2*PP-2 ) = D
Z( I4-2*PP ) = ZERO
D = Z( I4+1 )
ELSE IF( SAFMIN*Z( I4+1 ).LT.Z( I4-2*PP-2 ) .AND.
$ SAFMIN*Z( I4-2*PP-2 ).LT.Z( I4+1 ) ) THEN
TEMP = Z( I4+1 ) / Z( I4-2*PP-2 )
Z( I4-2*PP ) = Z( I4-1 )*TEMP
D = D*TEMP
ELSE
Z( I4-2*PP ) = Z( I4+1 )*( Z( I4-1 ) / Z( I4-2*PP-2 ) )
D = Z( I4+1 )*( D / Z( I4-2*PP-2 ) )
END IF
EMIN = MIN( EMIN, Z( I4-2*PP ) )
60 CONTINUE
Z( 4*N0-PP-2 ) = D
*
* Now find qmax.
*
QMAX = Z( 4*I0-PP-2 )
DO 70 I4 = 4*I0 - PP + 2, 4*N0 - PP - 2, 4
QMAX = MAX( QMAX, Z( I4 ) )
70 CONTINUE
*
* Prepare for the next iteration on K.
*
PP = 1 - PP
80 CONTINUE
*
* Initialise variables to pass to DLASQ3.
*
TTYPE = 0
DMIN1 = ZERO
DMIN2 = ZERO
DN = ZERO
DN1 = ZERO
DN2 = ZERO
G = ZERO
TAU = ZERO
*
ITER = 2
NFAIL = 0
NDIV = 2*( N0-I0 )
*
DO 160 IWHILA = 1, N + 1
IF( N0.LT.1 )
$ GO TO 170
*
* While array unfinished do
*
* E(N0) holds the value of SIGMA when submatrix in I0:N0
* splits from the rest of the array, but is negated.
*
DESIG = ZERO
IF( N0.EQ.N ) THEN
SIGMA = ZERO
ELSE
SIGMA = -Z( 4*N0-1 )
END IF
IF( SIGMA.LT.ZERO ) THEN
INFO = 1
RETURN
END IF
*
* Find last unreduced submatrix's top index I0, find QMAX and
* EMIN. Find Gershgorin-type bound if Q's much greater than E's.
*
EMAX = ZERO
IF( N0.GT.I0 ) THEN
EMIN = ABS( Z( 4*N0-5 ) )
ELSE
EMIN = ZERO
END IF
QMIN = Z( 4*N0-3 )
QMAX = QMIN
DO 90 I4 = 4*N0, 8, -4
IF( Z( I4-5 ).LE.ZERO )
$ GO TO 100
IF( QMIN.GE.FOUR*EMAX ) THEN
QMIN = MIN( QMIN, Z( I4-3 ) )
EMAX = MAX( EMAX, Z( I4-5 ) )
END IF
QMAX = MAX( QMAX, Z( I4-7 )+Z( I4-5 ) )
EMIN = MIN( EMIN, Z( I4-5 ) )
90 CONTINUE
I4 = 4
*
100 CONTINUE
I0 = I4 / 4
PP = 0
*
IF( N0-I0.GT.1 ) THEN
DEE = Z( 4*I0-3 )
DEEMIN = DEE
KMIN = I0
DO 110 I4 = 4*I0+1, 4*N0-3, 4
DEE = Z( I4 )*( DEE /( DEE+Z( I4-2 ) ) )
IF( DEE.LE.DEEMIN ) THEN
DEEMIN = DEE
KMIN = ( I4+3 )/4
END IF
110 CONTINUE
IF( (KMIN-I0)*2.LT.N0-KMIN .AND.
$ DEEMIN.LE.HALF*Z(4*N0-3) ) THEN
IPN4 = 4*( I0+N0 )
PP = 2
DO 120 I4 = 4*I0, 2*( I0+N0-1 ), 4
TEMP = Z( I4-3 )
Z( I4-3 ) = Z( IPN4-I4-3 )
Z( IPN4-I4-3 ) = TEMP
TEMP = Z( I4-2 )
Z( I4-2 ) = Z( IPN4-I4-2 )
Z( IPN4-I4-2 ) = TEMP
TEMP = Z( I4-1 )
Z( I4-1 ) = Z( IPN4-I4-5 )
Z( IPN4-I4-5 ) = TEMP
TEMP = Z( I4 )
Z( I4 ) = Z( IPN4-I4-4 )
Z( IPN4-I4-4 ) = TEMP
120 CONTINUE
END IF
END IF
*
* Put -(initial shift) into DMIN.
*
DMIN = -MAX( ZERO, QMIN-TWO*SQRT( QMIN )*SQRT( EMAX ) )
*
* Now I0:N0 is unreduced.
* PP = 0 for ping, PP = 1 for pong.
* PP = 2 indicates that flipping was applied to the Z array and
* and that the tests for deflation upon entry in DLASQ3
* should not be performed.
*
NBIG = 100*( N0-I0+1 )
DO 140 IWHILB = 1, NBIG
IF( I0.GT.N0 )
$ GO TO 150
*
* While submatrix unfinished take a good dqds step.
*
CALL DLASQ3( I0, N0, Z, PP, DMIN, SIGMA, DESIG, QMAX, NFAIL,
$ ITER, NDIV, IEEE, TTYPE, DMIN1, DMIN2, DN, DN1,
$ DN2, G, TAU )
*
PP = 1 - PP
*
* When EMIN is very small check for splits.
*
IF( PP.EQ.0 .AND. N0-I0.GE.3 ) THEN
IF( Z( 4*N0 ).LE.TOL2*QMAX .OR.
$ Z( 4*N0-1 ).LE.TOL2*SIGMA ) THEN
SPLT = I0 - 1
QMAX = Z( 4*I0-3 )
EMIN = Z( 4*I0-1 )
OLDEMN = Z( 4*I0 )
DO 130 I4 = 4*I0, 4*( N0-3 ), 4
IF( Z( I4 ).LE.TOL2*Z( I4-3 ) .OR.
$ Z( I4-1 ).LE.TOL2*SIGMA ) THEN
Z( I4-1 ) = -SIGMA
SPLT = I4 / 4
QMAX = ZERO
EMIN = Z( I4+3 )
OLDEMN = Z( I4+4 )
ELSE
QMAX = MAX( QMAX, Z( I4+1 ) )
EMIN = MIN( EMIN, Z( I4-1 ) )
OLDEMN = MIN( OLDEMN, Z( I4 ) )
END IF
130 CONTINUE
Z( 4*N0-1 ) = EMIN
Z( 4*N0 ) = OLDEMN
I0 = SPLT + 1
END IF
END IF
*
140 CONTINUE
*
INFO = 2
*
* Maximum number of iterations exceeded, restore the shift
* SIGMA and place the new d's and e's in a qd array.
* This might need to be done for several blocks
*
I1 = I0
N1 = N0
145 CONTINUE
TEMPQ = Z( 4*I0-3 )
Z( 4*I0-3 ) = Z( 4*I0-3 ) + SIGMA
DO K = I0+1, N0
TEMPE = Z( 4*K-5 )
Z( 4*K-5 ) = Z( 4*K-5 ) * (TEMPQ / Z( 4*K-7 ))
TEMPQ = Z( 4*K-3 )
Z( 4*K-3 ) = Z( 4*K-3 ) + SIGMA + TEMPE - Z( 4*K-5 )
END DO
*
* Prepare to do this on the previous block if there is one
*
IF( I1.GT.1 ) THEN
N1 = I1-1
DO WHILE( ( I1.GE.2 ) .AND. ( Z(4*I1-5).GE.ZERO ) )
I1 = I1 - 1
END DO
SIGMA = -Z(4*N1-1)
GO TO 145
END IF
DO K = 1, N
Z( 2*K-1 ) = Z( 4*K-3 )
*
* Only the block 1..N0 is unfinished. The rest of the e's
* must be essentially zero, although sometimes other data
* has been stored in them.
*
IF( K.LT.N0 ) THEN
Z( 2*K ) = Z( 4*K-1 )
ELSE
Z( 2*K ) = 0
END IF
END DO
RETURN
*
* end IWHILB
*
150 CONTINUE
*
160 CONTINUE
*
INFO = 3
RETURN
*
* end IWHILA
*
170 CONTINUE
*
* Move q's to the front.
*
DO 180 K = 2, N
Z( K ) = Z( 4*K-3 )
180 CONTINUE
*
* Sort and compute sum of eigenvalues.
*
CALL DLASRT( 'D', N, Z, IINFO )
*
E = ZERO
DO 190 K = N, 1, -1
E = E + Z( K )
190 CONTINUE
*
* Store trace, sum(eigenvalues) and information on performance.
*
Z( 2*N+1 ) = TRACE
Z( 2*N+2 ) = E
Z( 2*N+3 ) = DBLE( ITER )
Z( 2*N+4 ) = DBLE( NDIV ) / DBLE( N**2 )
Z( 2*N+5 ) = HUNDRD*NFAIL / DBLE( ITER )
RETURN
*
* End of DLASQ2
*
END
Event Timeline
Log In to Comment