Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90346616
Transform.h
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Oct 31, 19:07
Size
55 KB
Mime Type
text/x-c++
Expires
Sat, Nov 2, 19:07 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22056448
Attached To
rLAMMPS lammps
Transform.h
View Options
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_TRANSFORM_H
#define EIGEN_TRANSFORM_H
namespace Eigen {
namespace internal {
template<typename Transform>
struct transform_traits
{
enum
{
Dim = Transform::Dim,
HDim = Transform::HDim,
Mode = Transform::Mode,
IsProjective = (int(Mode)==int(Projective))
};
};
template< typename TransformType,
typename MatrixType,
int Case = transform_traits<TransformType>::IsProjective ? 0
: int(MatrixType::RowsAtCompileTime) == int(transform_traits<TransformType>::HDim) ? 1
: 2>
struct transform_right_product_impl;
template< typename Other,
int Mode,
int Options,
int Dim,
int HDim,
int OtherRows=Other::RowsAtCompileTime,
int OtherCols=Other::ColsAtCompileTime>
struct transform_left_product_impl;
template< typename Lhs,
typename Rhs,
bool AnyProjective =
transform_traits<Lhs>::IsProjective ||
transform_traits<Rhs>::IsProjective>
struct transform_transform_product_impl;
template< typename Other,
int Mode,
int Options,
int Dim,
int HDim,
int OtherRows=Other::RowsAtCompileTime,
int OtherCols=Other::ColsAtCompileTime>
struct transform_construct_from_matrix;
template<typename TransformType> struct transform_take_affine_part;
template<int Mode> struct transform_make_affine;
} // end namespace internal
/** \geometry_module \ingroup Geometry_Module
*
* \class Transform
*
* \brief Represents an homogeneous transformation in a N dimensional space
*
* \tparam _Scalar the scalar type, i.e., the type of the coefficients
* \tparam _Dim the dimension of the space
* \tparam _Mode the type of the transformation. Can be:
* - #Affine: the transformation is stored as a (Dim+1)^2 matrix,
* where the last row is assumed to be [0 ... 0 1].
* - #AffineCompact: the transformation is stored as a (Dim)x(Dim+1) matrix.
* - #Projective: the transformation is stored as a (Dim+1)^2 matrix
* without any assumption.
* \tparam _Options has the same meaning as in class Matrix. It allows to specify DontAlign and/or RowMajor.
* These Options are passed directly to the underlying matrix type.
*
* The homography is internally represented and stored by a matrix which
* is available through the matrix() method. To understand the behavior of
* this class you have to think a Transform object as its internal
* matrix representation. The chosen convention is right multiply:
*
* \code v' = T * v \endcode
*
* Therefore, an affine transformation matrix M is shaped like this:
*
* \f$ \left( \begin{array}{cc}
* linear & translation\\
* 0 ... 0 & 1
* \end{array} \right) \f$
*
* Note that for a projective transformation the last row can be anything,
* and then the interpretation of different parts might be sightly different.
*
* However, unlike a plain matrix, the Transform class provides many features
* simplifying both its assembly and usage. In particular, it can be composed
* with any other transformations (Transform,Translation,RotationBase,DiagonalMatrix)
* and can be directly used to transform implicit homogeneous vectors. All these
* operations are handled via the operator*. For the composition of transformations,
* its principle consists to first convert the right/left hand sides of the product
* to a compatible (Dim+1)^2 matrix and then perform a pure matrix product.
* Of course, internally, operator* tries to perform the minimal number of operations
* according to the nature of each terms. Likewise, when applying the transform
* to points, the latters are automatically promoted to homogeneous vectors
* before doing the matrix product. The conventions to homogeneous representations
* are performed as follow:
*
* \b Translation t (Dim)x(1):
* \f$ \left( \begin{array}{cc}
* I & t \\
* 0\,...\,0 & 1
* \end{array} \right) \f$
*
* \b Rotation R (Dim)x(Dim):
* \f$ \left( \begin{array}{cc}
* R & 0\\
* 0\,...\,0 & 1
* \end{array} \right) \f$
*<!--
* \b Linear \b Matrix L (Dim)x(Dim):
* \f$ \left( \begin{array}{cc}
* L & 0\\
* 0\,...\,0 & 1
* \end{array} \right) \f$
*
* \b Affine \b Matrix A (Dim)x(Dim+1):
* \f$ \left( \begin{array}{c}
* A\\
* 0\,...\,0\,1
* \end{array} \right) \f$
*-->
* \b Scaling \b DiagonalMatrix S (Dim)x(Dim):
* \f$ \left( \begin{array}{cc}
* S & 0\\
* 0\,...\,0 & 1
* \end{array} \right) \f$
*
* \b Column \b point v (Dim)x(1):
* \f$ \left( \begin{array}{c}
* v\\
* 1
* \end{array} \right) \f$
*
* \b Set \b of \b column \b points V1...Vn (Dim)x(n):
* \f$ \left( \begin{array}{ccc}
* v_1 & ... & v_n\\
* 1 & ... & 1
* \end{array} \right) \f$
*
* The concatenation of a Transform object with any kind of other transformation
* always returns a Transform object.
*
* A little exception to the "as pure matrix product" rule is the case of the
* transformation of non homogeneous vectors by an affine transformation. In
* that case the last matrix row can be ignored, and the product returns non
* homogeneous vectors.
*
* Since, for instance, a Dim x Dim matrix is interpreted as a linear transformation,
* it is not possible to directly transform Dim vectors stored in a Dim x Dim matrix.
* The solution is either to use a Dim x Dynamic matrix or explicitly request a
* vector transformation by making the vector homogeneous:
* \code
* m' = T * m.colwise().homogeneous();
* \endcode
* Note that there is zero overhead.
*
* Conversion methods from/to Qt's QMatrix and QTransform are available if the
* preprocessor token EIGEN_QT_SUPPORT is defined.
*
* This class can be extended with the help of the plugin mechanism described on the page
* \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_TRANSFORM_PLUGIN.
*
* \sa class Matrix, class Quaternion
*/
template<typename _Scalar, int _Dim, int _Mode, int _Options>
class Transform
{
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim==Dynamic ? Dynamic : (_Dim+1)*(_Dim+1))
enum {
Mode = _Mode,
Options = _Options,
Dim = _Dim, ///< space dimension in which the transformation holds
HDim = _Dim+1, ///< size of a respective homogeneous vector
Rows = int(Mode)==(AffineCompact) ? Dim : HDim
};
/** the scalar type of the coefficients */
typedef _Scalar Scalar;
typedef DenseIndex Index;
/** type of the matrix used to represent the transformation */
typedef typename internal::make_proper_matrix_type<Scalar,Rows,HDim,Options>::type MatrixType;
/** constified MatrixType */
typedef const MatrixType ConstMatrixType;
/** type of the matrix used to represent the linear part of the transformation */
typedef Matrix<Scalar,Dim,Dim,Options> LinearMatrixType;
/** type of read/write reference to the linear part of the transformation */
typedef Block<MatrixType,Dim,Dim,int(Mode)==(AffineCompact) && (Options&RowMajor)==0> LinearPart;
/** type of read reference to the linear part of the transformation */
typedef const Block<ConstMatrixType,Dim,Dim,int(Mode)==(AffineCompact) && (Options&RowMajor)==0> ConstLinearPart;
/** type of read/write reference to the affine part of the transformation */
typedef typename internal::conditional<int(Mode)==int(AffineCompact),
MatrixType&,
Block<MatrixType,Dim,HDim> >::type AffinePart;
/** type of read reference to the affine part of the transformation */
typedef typename internal::conditional<int(Mode)==int(AffineCompact),
const MatrixType&,
const Block<const MatrixType,Dim,HDim> >::type ConstAffinePart;
/** type of a vector */
typedef Matrix<Scalar,Dim,1> VectorType;
/** type of a read/write reference to the translation part of the rotation */
typedef Block<MatrixType,Dim,1,int(Mode)==(AffineCompact)> TranslationPart;
/** type of a read reference to the translation part of the rotation */
typedef const Block<ConstMatrixType,Dim,1,int(Mode)==(AffineCompact)> ConstTranslationPart;
/** corresponding translation type */
typedef Translation<Scalar,Dim> TranslationType;
// this intermediate enum is needed to avoid an ICE with gcc 3.4 and 4.0
enum { TransformTimeDiagonalMode = ((Mode==int(Isometry))?Affine:int(Mode)) };
/** The return type of the product between a diagonal matrix and a transform */
typedef Transform<Scalar,Dim,TransformTimeDiagonalMode> TransformTimeDiagonalReturnType;
protected:
MatrixType m_matrix;
public:
/** Default constructor without initialization of the meaningful coefficients.
* If Mode==Affine, then the last row is set to [0 ... 0 1] */
inline Transform()
{
check_template_params();
internal::transform_make_affine<(int(Mode)==Affine) ? Affine : AffineCompact>::run(m_matrix);
}
inline Transform(const Transform& other)
{
check_template_params();
m_matrix = other.m_matrix;
}
inline explicit Transform(const TranslationType& t)
{
check_template_params();
*this = t;
}
inline explicit Transform(const UniformScaling<Scalar>& s)
{
check_template_params();
*this = s;
}
template<typename Derived>
inline explicit Transform(const RotationBase<Derived, Dim>& r)
{
check_template_params();
*this = r;
}
inline Transform& operator=(const Transform& other)
{ m_matrix = other.m_matrix; return *this; }
typedef internal::transform_take_affine_part<Transform> take_affine_part;
/** Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix. */
template<typename OtherDerived>
inline explicit Transform(const EigenBase<OtherDerived>& other)
{
EIGEN_STATIC_ASSERT((internal::is_same<Scalar,typename OtherDerived::Scalar>::value),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY);
check_template_params();
internal::transform_construct_from_matrix<OtherDerived,Mode,Options,Dim,HDim>::run(this, other.derived());
}
/** Set \c *this from a Dim^2 or (Dim+1)^2 matrix. */
template<typename OtherDerived>
inline Transform& operator=(const EigenBase<OtherDerived>& other)
{
EIGEN_STATIC_ASSERT((internal::is_same<Scalar,typename OtherDerived::Scalar>::value),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY);
internal::transform_construct_from_matrix<OtherDerived,Mode,Options,Dim,HDim>::run(this, other.derived());
return *this;
}
template<int OtherOptions>
inline Transform(const Transform<Scalar,Dim,Mode,OtherOptions>& other)
{
check_template_params();
// only the options change, we can directly copy the matrices
m_matrix = other.matrix();
}
template<int OtherMode,int OtherOptions>
inline Transform(const Transform<Scalar,Dim,OtherMode,OtherOptions>& other)
{
check_template_params();
// prevent conversions as:
// Affine | AffineCompact | Isometry = Projective
EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Projective), Mode==int(Projective)),
YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION)
// prevent conversions as:
// Isometry = Affine | AffineCompact
EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Affine)||OtherMode==int(AffineCompact), Mode!=int(Isometry)),
YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION)
enum { ModeIsAffineCompact = Mode == int(AffineCompact),
OtherModeIsAffineCompact = OtherMode == int(AffineCompact)
};
if(ModeIsAffineCompact == OtherModeIsAffineCompact)
{
// We need the block expression because the code is compiled for all
// combinations of transformations and will trigger a compile time error
// if one tries to assign the matrices directly
m_matrix.template block<Dim,Dim+1>(0,0) = other.matrix().template block<Dim,Dim+1>(0,0);
makeAffine();
}
else if(OtherModeIsAffineCompact)
{
typedef typename Transform<Scalar,Dim,OtherMode,OtherOptions>::MatrixType OtherMatrixType;
internal::transform_construct_from_matrix<OtherMatrixType,Mode,Options,Dim,HDim>::run(this, other.matrix());
}
else
{
// here we know that Mode == AffineCompact and OtherMode != AffineCompact.
// if OtherMode were Projective, the static assert above would already have caught it.
// So the only possibility is that OtherMode == Affine
linear() = other.linear();
translation() = other.translation();
}
}
template<typename OtherDerived>
Transform(const ReturnByValue<OtherDerived>& other)
{
check_template_params();
other.evalTo(*this);
}
template<typename OtherDerived>
Transform& operator=(const ReturnByValue<OtherDerived>& other)
{
other.evalTo(*this);
return *this;
}
#ifdef EIGEN_QT_SUPPORT
inline Transform(const QMatrix& other);
inline Transform& operator=(const QMatrix& other);
inline QMatrix toQMatrix(void) const;
inline Transform(const QTransform& other);
inline Transform& operator=(const QTransform& other);
inline QTransform toQTransform(void) const;
#endif
/** shortcut for m_matrix(row,col);
* \sa MatrixBase::operator(Index,Index) const */
inline Scalar operator() (Index row, Index col) const { return m_matrix(row,col); }
/** shortcut for m_matrix(row,col);
* \sa MatrixBase::operator(Index,Index) */
inline Scalar& operator() (Index row, Index col) { return m_matrix(row,col); }
/** \returns a read-only expression of the transformation matrix */
inline const MatrixType& matrix() const { return m_matrix; }
/** \returns a writable expression of the transformation matrix */
inline MatrixType& matrix() { return m_matrix; }
/** \returns a read-only expression of the linear part of the transformation */
inline ConstLinearPart linear() const { return ConstLinearPart(m_matrix,0,0); }
/** \returns a writable expression of the linear part of the transformation */
inline LinearPart linear() { return LinearPart(m_matrix,0,0); }
/** \returns a read-only expression of the Dim x HDim affine part of the transformation */
inline ConstAffinePart affine() const { return take_affine_part::run(m_matrix); }
/** \returns a writable expression of the Dim x HDim affine part of the transformation */
inline AffinePart affine() { return take_affine_part::run(m_matrix); }
/** \returns a read-only expression of the translation vector of the transformation */
inline ConstTranslationPart translation() const { return ConstTranslationPart(m_matrix,0,Dim); }
/** \returns a writable expression of the translation vector of the transformation */
inline TranslationPart translation() { return TranslationPart(m_matrix,0,Dim); }
/** \returns an expression of the product between the transform \c *this and a matrix expression \a other.
*
* The right-hand-side \a other can be either:
* \li an homogeneous vector of size Dim+1,
* \li a set of homogeneous vectors of size Dim+1 x N,
* \li a transformation matrix of size Dim+1 x Dim+1.
*
* Moreover, if \c *this represents an affine transformation (i.e., Mode!=Projective), then \a other can also be:
* \li a point of size Dim (computes: \code this->linear() * other + this->translation()\endcode),
* \li a set of N points as a Dim x N matrix (computes: \code (this->linear() * other).colwise() + this->translation()\endcode),
*
* In all cases, the return type is a matrix or vector of same sizes as the right-hand-side \a other.
*
* If you want to interpret \a other as a linear or affine transformation, then first convert it to a Transform<> type,
* or do your own cooking.
*
* Finally, if you want to apply Affine transformations to vectors, then explicitly apply the linear part only:
* \code
* Affine3f A;
* Vector3f v1, v2;
* v2 = A.linear() * v1;
* \endcode
*
*/
// note: this function is defined here because some compilers cannot find the respective declaration
template<typename OtherDerived>
EIGEN_STRONG_INLINE const typename OtherDerived::PlainObject
operator * (const EigenBase<OtherDerived> &other) const
{ return internal::transform_right_product_impl<Transform, OtherDerived>::run(*this,other.derived()); }
/** \returns the product expression of a transformation matrix \a a times a transform \a b
*
* The left hand side \a other can be either:
* \li a linear transformation matrix of size Dim x Dim,
* \li an affine transformation matrix of size Dim x Dim+1,
* \li a general transformation matrix of size Dim+1 x Dim+1.
*/
template<typename OtherDerived> friend
inline const typename internal::transform_left_product_impl<OtherDerived,Mode,Options,_Dim,_Dim+1>::ResultType
operator * (const EigenBase<OtherDerived> &a, const Transform &b)
{ return internal::transform_left_product_impl<OtherDerived,Mode,Options,Dim,HDim>::run(a.derived(),b); }
/** \returns The product expression of a transform \a a times a diagonal matrix \a b
*
* The rhs diagonal matrix is interpreted as an affine scaling transformation. The
* product results in a Transform of the same type (mode) as the lhs only if the lhs
* mode is no isometry. In that case, the returned transform is an affinity.
*/
template<typename DiagonalDerived>
inline const TransformTimeDiagonalReturnType
operator * (const DiagonalBase<DiagonalDerived> &b) const
{
TransformTimeDiagonalReturnType res(*this);
res.linear() *= b;
return res;
}
/** \returns The product expression of a diagonal matrix \a a times a transform \a b
*
* The lhs diagonal matrix is interpreted as an affine scaling transformation. The
* product results in a Transform of the same type (mode) as the lhs only if the lhs
* mode is no isometry. In that case, the returned transform is an affinity.
*/
template<typename DiagonalDerived>
friend inline TransformTimeDiagonalReturnType
operator * (const DiagonalBase<DiagonalDerived> &a, const Transform &b)
{
TransformTimeDiagonalReturnType res;
res.linear().noalias() = a*b.linear();
res.translation().noalias() = a*b.translation();
if (Mode!=int(AffineCompact))
res.matrix().row(Dim) = b.matrix().row(Dim);
return res;
}
template<typename OtherDerived>
inline Transform& operator*=(const EigenBase<OtherDerived>& other) { return *this = *this * other; }
/** Concatenates two transformations */
inline const Transform operator * (const Transform& other) const
{
return internal::transform_transform_product_impl<Transform,Transform>::run(*this,other);
}
#ifdef __INTEL_COMPILER
private:
// this intermediate structure permits to workaround a bug in ICC 11:
// error: template instantiation resulted in unexpected function type of "Eigen::Transform<double, 3, 32, 0>
// (const Eigen::Transform<double, 3, 2, 0> &) const"
// (the meaning of a name may have changed since the template declaration -- the type of the template is:
// "Eigen::internal::transform_transform_product_impl<Eigen::Transform<double, 3, 32, 0>,
// Eigen::Transform<double, 3, Mode, Options>, <expression>>::ResultType (const Eigen::Transform<double, 3, Mode, Options> &) const")
//
template<int OtherMode,int OtherOptions> struct icc_11_workaround
{
typedef internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> > ProductType;
typedef typename ProductType::ResultType ResultType;
};
public:
/** Concatenates two different transformations */
template<int OtherMode,int OtherOptions>
inline typename icc_11_workaround<OtherMode,OtherOptions>::ResultType
operator * (const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) const
{
typedef typename icc_11_workaround<OtherMode,OtherOptions>::ProductType ProductType;
return ProductType::run(*this,other);
}
#else
/** Concatenates two different transformations */
template<int OtherMode,int OtherOptions>
inline typename internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> >::ResultType
operator * (const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) const
{
return internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> >::run(*this,other);
}
#endif
/** \sa MatrixBase::setIdentity() */
void setIdentity() { m_matrix.setIdentity(); }
/**
* \brief Returns an identity transformation.
* \todo In the future this function should be returning a Transform expression.
*/
static const Transform Identity()
{
return Transform(MatrixType::Identity());
}
template<typename OtherDerived>
inline Transform& scale(const MatrixBase<OtherDerived> &other);
template<typename OtherDerived>
inline Transform& prescale(const MatrixBase<OtherDerived> &other);
inline Transform& scale(const Scalar& s);
inline Transform& prescale(const Scalar& s);
template<typename OtherDerived>
inline Transform& translate(const MatrixBase<OtherDerived> &other);
template<typename OtherDerived>
inline Transform& pretranslate(const MatrixBase<OtherDerived> &other);
template<typename RotationType>
inline Transform& rotate(const RotationType& rotation);
template<typename RotationType>
inline Transform& prerotate(const RotationType& rotation);
Transform& shear(const Scalar& sx, const Scalar& sy);
Transform& preshear(const Scalar& sx, const Scalar& sy);
inline Transform& operator=(const TranslationType& t);
inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); }
inline Transform operator*(const TranslationType& t) const;
inline Transform& operator=(const UniformScaling<Scalar>& t);
inline Transform& operator*=(const UniformScaling<Scalar>& s) { return scale(s.factor()); }
inline Transform<Scalar,Dim,(int(Mode)==int(Isometry)?int(Affine):int(Mode))> operator*(const UniformScaling<Scalar>& s) const
{
Transform<Scalar,Dim,(int(Mode)==int(Isometry)?int(Affine):int(Mode)),Options> res = *this;
res.scale(s.factor());
return res;
}
inline Transform& operator*=(const DiagonalMatrix<Scalar,Dim>& s) { linear() *= s; return *this; }
template<typename Derived>
inline Transform& operator=(const RotationBase<Derived,Dim>& r);
template<typename Derived>
inline Transform& operator*=(const RotationBase<Derived,Dim>& r) { return rotate(r.toRotationMatrix()); }
template<typename Derived>
inline Transform operator*(const RotationBase<Derived,Dim>& r) const;
const LinearMatrixType rotation() const;
template<typename RotationMatrixType, typename ScalingMatrixType>
void computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const;
template<typename ScalingMatrixType, typename RotationMatrixType>
void computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const;
template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale);
inline Transform inverse(TransformTraits traits = (TransformTraits)Mode) const;
/** \returns a const pointer to the column major internal matrix */
const Scalar* data() const { return m_matrix.data(); }
/** \returns a non-const pointer to the column major internal matrix */
Scalar* data() { return m_matrix.data(); }
/** \returns \c *this with scalar type casted to \a NewScalarType
*
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
* then this function smartly returns a const reference to \c *this.
*/
template<typename NewScalarType>
inline typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim,Mode,Options> >::type cast() const
{ return typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim,Mode,Options> >::type(*this); }
/** Copy constructor with scalar type conversion */
template<typename OtherScalarType>
inline explicit Transform(const Transform<OtherScalarType,Dim,Mode,Options>& other)
{
check_template_params();
m_matrix = other.matrix().template cast<Scalar>();
}
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
bool isApprox(const Transform& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
{ return m_matrix.isApprox(other.m_matrix, prec); }
/** Sets the last row to [0 ... 0 1]
*/
void makeAffine()
{
internal::transform_make_affine<int(Mode)>::run(m_matrix);
}
/** \internal
* \returns the Dim x Dim linear part if the transformation is affine,
* and the HDim x Dim part for projective transformations.
*/
inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt()
{ return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); }
/** \internal
* \returns the Dim x Dim linear part if the transformation is affine,
* and the HDim x Dim part for projective transformations.
*/
inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt() const
{ return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); }
/** \internal
* \returns the translation part if the transformation is affine,
* and the last column for projective transformations.
*/
inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt()
{ return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); }
/** \internal
* \returns the translation part if the transformation is affine,
* and the last column for projective transformations.
*/
inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt() const
{ return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); }
#ifdef EIGEN_TRANSFORM_PLUGIN
#include EIGEN_TRANSFORM_PLUGIN
#endif
protected:
#ifndef EIGEN_PARSED_BY_DOXYGEN
static EIGEN_STRONG_INLINE void check_template_params()
{
EIGEN_STATIC_ASSERT((Options & (DontAlign|RowMajor)) == Options, INVALID_MATRIX_TEMPLATE_PARAMETERS)
}
#endif
};
/** \ingroup Geometry_Module */
typedef Transform<float,2,Isometry> Isometry2f;
/** \ingroup Geometry_Module */
typedef Transform<float,3,Isometry> Isometry3f;
/** \ingroup Geometry_Module */
typedef Transform<double,2,Isometry> Isometry2d;
/** \ingroup Geometry_Module */
typedef Transform<double,3,Isometry> Isometry3d;
/** \ingroup Geometry_Module */
typedef Transform<float,2,Affine> Affine2f;
/** \ingroup Geometry_Module */
typedef Transform<float,3,Affine> Affine3f;
/** \ingroup Geometry_Module */
typedef Transform<double,2,Affine> Affine2d;
/** \ingroup Geometry_Module */
typedef Transform<double,3,Affine> Affine3d;
/** \ingroup Geometry_Module */
typedef Transform<float,2,AffineCompact> AffineCompact2f;
/** \ingroup Geometry_Module */
typedef Transform<float,3,AffineCompact> AffineCompact3f;
/** \ingroup Geometry_Module */
typedef Transform<double,2,AffineCompact> AffineCompact2d;
/** \ingroup Geometry_Module */
typedef Transform<double,3,AffineCompact> AffineCompact3d;
/** \ingroup Geometry_Module */
typedef Transform<float,2,Projective> Projective2f;
/** \ingroup Geometry_Module */
typedef Transform<float,3,Projective> Projective3f;
/** \ingroup Geometry_Module */
typedef Transform<double,2,Projective> Projective2d;
/** \ingroup Geometry_Module */
typedef Transform<double,3,Projective> Projective3d;
/**************************
*** Optional QT support ***
**************************/
#ifdef EIGEN_QT_SUPPORT
/** Initializes \c *this from a QMatrix assuming the dimension is 2.
*
* This function is available only if the token EIGEN_QT_SUPPORT is defined.
*/
template<typename Scalar, int Dim, int Mode,int Options>
Transform<Scalar,Dim,Mode,Options>::Transform(const QMatrix& other)
{
check_template_params();
*this = other;
}
/** Set \c *this from a QMatrix assuming the dimension is 2.
*
* This function is available only if the token EIGEN_QT_SUPPORT is defined.
*/
template<typename Scalar, int Dim, int Mode,int Options>
Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const QMatrix& other)
{
EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
m_matrix << other.m11(), other.m21(), other.dx(),
other.m12(), other.m22(), other.dy(),
0, 0, 1;
return *this;
}
/** \returns a QMatrix from \c *this assuming the dimension is 2.
*
* \warning this conversion might loss data if \c *this is not affine
*
* This function is available only if the token EIGEN_QT_SUPPORT is defined.
*/
template<typename Scalar, int Dim, int Mode, int Options>
QMatrix Transform<Scalar,Dim,Mode,Options>::toQMatrix(void) const
{
check_template_params();
EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
return QMatrix(m_matrix.coeff(0,0), m_matrix.coeff(1,0),
m_matrix.coeff(0,1), m_matrix.coeff(1,1),
m_matrix.coeff(0,2), m_matrix.coeff(1,2));
}
/** Initializes \c *this from a QTransform assuming the dimension is 2.
*
* This function is available only if the token EIGEN_QT_SUPPORT is defined.
*/
template<typename Scalar, int Dim, int Mode,int Options>
Transform<Scalar,Dim,Mode,Options>::Transform(const QTransform& other)
{
check_template_params();
*this = other;
}
/** Set \c *this from a QTransform assuming the dimension is 2.
*
* This function is available only if the token EIGEN_QT_SUPPORT is defined.
*/
template<typename Scalar, int Dim, int Mode, int Options>
Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const QTransform& other)
{
check_template_params();
EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
if (Mode == int(AffineCompact))
m_matrix << other.m11(), other.m21(), other.dx(),
other.m12(), other.m22(), other.dy();
else
m_matrix << other.m11(), other.m21(), other.dx(),
other.m12(), other.m22(), other.dy(),
other.m13(), other.m23(), other.m33();
return *this;
}
/** \returns a QTransform from \c *this assuming the dimension is 2.
*
* This function is available only if the token EIGEN_QT_SUPPORT is defined.
*/
template<typename Scalar, int Dim, int Mode, int Options>
QTransform Transform<Scalar,Dim,Mode,Options>::toQTransform(void) const
{
EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
if (Mode == int(AffineCompact))
return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0),
m_matrix.coeff(0,1), m_matrix.coeff(1,1),
m_matrix.coeff(0,2), m_matrix.coeff(1,2));
else
return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), m_matrix.coeff(2,0),
m_matrix.coeff(0,1), m_matrix.coeff(1,1), m_matrix.coeff(2,1),
m_matrix.coeff(0,2), m_matrix.coeff(1,2), m_matrix.coeff(2,2));
}
#endif
/*********************
*** Procedural API ***
*********************/
/** Applies on the right the non uniform scale transformation represented
* by the vector \a other to \c *this and returns a reference to \c *this.
* \sa prescale()
*/
template<typename Scalar, int Dim, int Mode, int Options>
template<typename OtherDerived>
Transform<Scalar,Dim,Mode,Options>&
Transform<Scalar,Dim,Mode,Options>::scale(const MatrixBase<OtherDerived> &other)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
linearExt().noalias() = (linearExt() * other.asDiagonal());
return *this;
}
/** Applies on the right a uniform scale of a factor \a c to \c *this
* and returns a reference to \c *this.
* \sa prescale(Scalar)
*/
template<typename Scalar, int Dim, int Mode, int Options>
inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::scale(const Scalar& s)
{
EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
linearExt() *= s;
return *this;
}
/** Applies on the left the non uniform scale transformation represented
* by the vector \a other to \c *this and returns a reference to \c *this.
* \sa scale()
*/
template<typename Scalar, int Dim, int Mode, int Options>
template<typename OtherDerived>
Transform<Scalar,Dim,Mode,Options>&
Transform<Scalar,Dim,Mode,Options>::prescale(const MatrixBase<OtherDerived> &other)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
m_matrix.template block<Dim,HDim>(0,0).noalias() = (other.asDiagonal() * m_matrix.template block<Dim,HDim>(0,0));
return *this;
}
/** Applies on the left a uniform scale of a factor \a c to \c *this
* and returns a reference to \c *this.
* \sa scale(Scalar)
*/
template<typename Scalar, int Dim, int Mode, int Options>
inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::prescale(const Scalar& s)
{
EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
m_matrix.template topRows<Dim>() *= s;
return *this;
}
/** Applies on the right the translation matrix represented by the vector \a other
* to \c *this and returns a reference to \c *this.
* \sa pretranslate()
*/
template<typename Scalar, int Dim, int Mode, int Options>
template<typename OtherDerived>
Transform<Scalar,Dim,Mode,Options>&
Transform<Scalar,Dim,Mode,Options>::translate(const MatrixBase<OtherDerived> &other)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
translationExt() += linearExt() * other;
return *this;
}
/** Applies on the left the translation matrix represented by the vector \a other
* to \c *this and returns a reference to \c *this.
* \sa translate()
*/
template<typename Scalar, int Dim, int Mode, int Options>
template<typename OtherDerived>
Transform<Scalar,Dim,Mode,Options>&
Transform<Scalar,Dim,Mode,Options>::pretranslate(const MatrixBase<OtherDerived> &other)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
if(int(Mode)==int(Projective))
affine() += other * m_matrix.row(Dim);
else
translation() += other;
return *this;
}
/** Applies on the right the rotation represented by the rotation \a rotation
* to \c *this and returns a reference to \c *this.
*
* The template parameter \a RotationType is the type of the rotation which
* must be known by internal::toRotationMatrix<>.
*
* Natively supported types includes:
* - any scalar (2D),
* - a Dim x Dim matrix expression,
* - a Quaternion (3D),
* - a AngleAxis (3D)
*
* This mechanism is easily extendable to support user types such as Euler angles,
* or a pair of Quaternion for 4D rotations.
*
* \sa rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType)
*/
template<typename Scalar, int Dim, int Mode, int Options>
template<typename RotationType>
Transform<Scalar,Dim,Mode,Options>&
Transform<Scalar,Dim,Mode,Options>::rotate(const RotationType& rotation)
{
linearExt() *= internal::toRotationMatrix<Scalar,Dim>(rotation);
return *this;
}
/** Applies on the left the rotation represented by the rotation \a rotation
* to \c *this and returns a reference to \c *this.
*
* See rotate() for further details.
*
* \sa rotate()
*/
template<typename Scalar, int Dim, int Mode, int Options>
template<typename RotationType>
Transform<Scalar,Dim,Mode,Options>&
Transform<Scalar,Dim,Mode,Options>::prerotate(const RotationType& rotation)
{
m_matrix.template block<Dim,HDim>(0,0) = internal::toRotationMatrix<Scalar,Dim>(rotation)
* m_matrix.template block<Dim,HDim>(0,0);
return *this;
}
/** Applies on the right the shear transformation represented
* by the vector \a other to \c *this and returns a reference to \c *this.
* \warning 2D only.
* \sa preshear()
*/
template<typename Scalar, int Dim, int Mode, int Options>
Transform<Scalar,Dim,Mode,Options>&
Transform<Scalar,Dim,Mode,Options>::shear(const Scalar& sx, const Scalar& sy)
{
EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
VectorType tmp = linear().col(0)*sy + linear().col(1);
linear() << linear().col(0) + linear().col(1)*sx, tmp;
return *this;
}
/** Applies on the left the shear transformation represented
* by the vector \a other to \c *this and returns a reference to \c *this.
* \warning 2D only.
* \sa shear()
*/
template<typename Scalar, int Dim, int Mode, int Options>
Transform<Scalar,Dim,Mode,Options>&
Transform<Scalar,Dim,Mode,Options>::preshear(const Scalar& sx, const Scalar& sy)
{
EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
m_matrix.template block<Dim,HDim>(0,0) = LinearMatrixType(1, sx, sy, 1) * m_matrix.template block<Dim,HDim>(0,0);
return *this;
}
/******************************************************
*** Scaling, Translation and Rotation compatibility ***
******************************************************/
template<typename Scalar, int Dim, int Mode, int Options>
inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const TranslationType& t)
{
linear().setIdentity();
translation() = t.vector();
makeAffine();
return *this;
}
template<typename Scalar, int Dim, int Mode, int Options>
inline Transform<Scalar,Dim,Mode,Options> Transform<Scalar,Dim,Mode,Options>::operator*(const TranslationType& t) const
{
Transform res = *this;
res.translate(t.vector());
return res;
}
template<typename Scalar, int Dim, int Mode, int Options>
inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const UniformScaling<Scalar>& s)
{
m_matrix.setZero();
linear().diagonal().fill(s.factor());
makeAffine();
return *this;
}
template<typename Scalar, int Dim, int Mode, int Options>
template<typename Derived>
inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const RotationBase<Derived,Dim>& r)
{
linear() = internal::toRotationMatrix<Scalar,Dim>(r);
translation().setZero();
makeAffine();
return *this;
}
template<typename Scalar, int Dim, int Mode, int Options>
template<typename Derived>
inline Transform<Scalar,Dim,Mode,Options> Transform<Scalar,Dim,Mode,Options>::operator*(const RotationBase<Derived,Dim>& r) const
{
Transform res = *this;
res.rotate(r.derived());
return res;
}
/************************
*** Special functions ***
************************/
/** \returns the rotation part of the transformation
*
*
* \svd_module
*
* \sa computeRotationScaling(), computeScalingRotation(), class SVD
*/
template<typename Scalar, int Dim, int Mode, int Options>
const typename Transform<Scalar,Dim,Mode,Options>::LinearMatrixType
Transform<Scalar,Dim,Mode,Options>::rotation() const
{
LinearMatrixType result;
computeRotationScaling(&result, (LinearMatrixType*)0);
return result;
}
/** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being
* not necessarily positive.
*
* If either pointer is zero, the corresponding computation is skipped.
*
*
*
* \svd_module
*
* \sa computeScalingRotation(), rotation(), class SVD
*/
template<typename Scalar, int Dim, int Mode, int Options>
template<typename RotationMatrixType, typename ScalingMatrixType>
void Transform<Scalar,Dim,Mode,Options>::computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const
{
JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU | ComputeFullV);
Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1
VectorType sv(svd.singularValues());
sv.coeffRef(0) *= x;
if(scaling) scaling->lazyAssign(svd.matrixV() * sv.asDiagonal() * svd.matrixV().adjoint());
if(rotation)
{
LinearMatrixType m(svd.matrixU());
m.col(0) /= x;
rotation->lazyAssign(m * svd.matrixV().adjoint());
}
}
/** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being
* not necessarily positive.
*
* If either pointer is zero, the corresponding computation is skipped.
*
*
*
* \svd_module
*
* \sa computeRotationScaling(), rotation(), class SVD
*/
template<typename Scalar, int Dim, int Mode, int Options>
template<typename ScalingMatrixType, typename RotationMatrixType>
void Transform<Scalar,Dim,Mode,Options>::computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const
{
JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU | ComputeFullV);
Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1
VectorType sv(svd.singularValues());
sv.coeffRef(0) *= x;
if(scaling) scaling->lazyAssign(svd.matrixU() * sv.asDiagonal() * svd.matrixU().adjoint());
if(rotation)
{
LinearMatrixType m(svd.matrixU());
m.col(0) /= x;
rotation->lazyAssign(m * svd.matrixV().adjoint());
}
}
/** Convenient method to set \c *this from a position, orientation and scale
* of a 3D object.
*/
template<typename Scalar, int Dim, int Mode, int Options>
template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
Transform<Scalar,Dim,Mode,Options>&
Transform<Scalar,Dim,Mode,Options>::fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale)
{
linear() = internal::toRotationMatrix<Scalar,Dim>(orientation);
linear() *= scale.asDiagonal();
translation() = position;
makeAffine();
return *this;
}
namespace internal {
template<int Mode>
struct transform_make_affine
{
template<typename MatrixType>
static void run(MatrixType &mat)
{
static const int Dim = MatrixType::ColsAtCompileTime-1;
mat.template block<1,Dim>(Dim,0).setZero();
mat.coeffRef(Dim,Dim) = typename MatrixType::Scalar(1);
}
};
template<>
struct transform_make_affine<AffineCompact>
{
template<typename MatrixType> static void run(MatrixType &) { }
};
// selector needed to avoid taking the inverse of a 3x4 matrix
template<typename TransformType, int Mode=TransformType::Mode>
struct projective_transform_inverse
{
static inline void run(const TransformType&, TransformType&)
{}
};
template<typename TransformType>
struct projective_transform_inverse<TransformType, Projective>
{
static inline void run(const TransformType& m, TransformType& res)
{
res.matrix() = m.matrix().inverse();
}
};
} // end namespace internal
/**
*
* \returns the inverse transformation according to some given knowledge
* on \c *this.
*
* \param hint allows to optimize the inversion process when the transformation
* is known to be not a general transformation (optional). The possible values are:
* - #Projective if the transformation is not necessarily affine, i.e., if the
* last row is not guaranteed to be [0 ... 0 1]
* - #Affine if the last row can be assumed to be [0 ... 0 1]
* - #Isometry if the transformation is only a concatenations of translations
* and rotations.
* The default is the template class parameter \c Mode.
*
* \warning unless \a traits is always set to NoShear or NoScaling, this function
* requires the generic inverse method of MatrixBase defined in the LU module. If
* you forget to include this module, then you will get hard to debug linking errors.
*
* \sa MatrixBase::inverse()
*/
template<typename Scalar, int Dim, int Mode, int Options>
Transform<Scalar,Dim,Mode,Options>
Transform<Scalar,Dim,Mode,Options>::inverse(TransformTraits hint) const
{
Transform res;
if (hint == Projective)
{
internal::projective_transform_inverse<Transform>::run(*this, res);
}
else
{
if (hint == Isometry)
{
res.matrix().template topLeftCorner<Dim,Dim>() = linear().transpose();
}
else if(hint&Affine)
{
res.matrix().template topLeftCorner<Dim,Dim>() = linear().inverse();
}
else
{
eigen_assert(false && "Invalid transform traits in Transform::Inverse");
}
// translation and remaining parts
res.matrix().template topRightCorner<Dim,1>()
= - res.matrix().template topLeftCorner<Dim,Dim>() * translation();
res.makeAffine(); // we do need this, because in the beginning res is uninitialized
}
return res;
}
namespace internal {
/*****************************************************
*** Specializations of take affine part ***
*****************************************************/
template<typename TransformType> struct transform_take_affine_part {
typedef typename TransformType::MatrixType MatrixType;
typedef typename TransformType::AffinePart AffinePart;
typedef typename TransformType::ConstAffinePart ConstAffinePart;
static inline AffinePart run(MatrixType& m)
{ return m.template block<TransformType::Dim,TransformType::HDim>(0,0); }
static inline ConstAffinePart run(const MatrixType& m)
{ return m.template block<TransformType::Dim,TransformType::HDim>(0,0); }
};
template<typename Scalar, int Dim, int Options>
struct transform_take_affine_part<Transform<Scalar,Dim,AffineCompact, Options> > {
typedef typename Transform<Scalar,Dim,AffineCompact,Options>::MatrixType MatrixType;
static inline MatrixType& run(MatrixType& m) { return m; }
static inline const MatrixType& run(const MatrixType& m) { return m; }
};
/*****************************************************
*** Specializations of construct from matrix ***
*****************************************************/
template<typename Other, int Mode, int Options, int Dim, int HDim>
struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, Dim,Dim>
{
static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other)
{
transform->linear() = other;
transform->translation().setZero();
transform->makeAffine();
}
};
template<typename Other, int Mode, int Options, int Dim, int HDim>
struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, Dim,HDim>
{
static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other)
{
transform->affine() = other;
transform->makeAffine();
}
};
template<typename Other, int Mode, int Options, int Dim, int HDim>
struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, HDim,HDim>
{
static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other)
{ transform->matrix() = other; }
};
template<typename Other, int Options, int Dim, int HDim>
struct transform_construct_from_matrix<Other, AffineCompact,Options,Dim,HDim, HDim,HDim>
{
static inline void run(Transform<typename Other::Scalar,Dim,AffineCompact,Options> *transform, const Other& other)
{ transform->matrix() = other.template block<Dim,HDim>(0,0); }
};
/**********************************************************
*** Specializations of operator* with rhs EigenBase ***
**********************************************************/
template<int LhsMode,int RhsMode>
struct transform_product_result
{
enum
{
Mode =
(LhsMode == (int)Projective || RhsMode == (int)Projective ) ? Projective :
(LhsMode == (int)Affine || RhsMode == (int)Affine ) ? Affine :
(LhsMode == (int)AffineCompact || RhsMode == (int)AffineCompact ) ? AffineCompact :
(LhsMode == (int)Isometry || RhsMode == (int)Isometry ) ? Isometry : Projective
};
};
template< typename TransformType, typename MatrixType >
struct transform_right_product_impl< TransformType, MatrixType, 0 >
{
typedef typename MatrixType::PlainObject ResultType;
static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other)
{
return T.matrix() * other;
}
};
template< typename TransformType, typename MatrixType >
struct transform_right_product_impl< TransformType, MatrixType, 1 >
{
enum {
Dim = TransformType::Dim,
HDim = TransformType::HDim,
OtherRows = MatrixType::RowsAtCompileTime,
OtherCols = MatrixType::ColsAtCompileTime
};
typedef typename MatrixType::PlainObject ResultType;
static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other)
{
EIGEN_STATIC_ASSERT(OtherRows==HDim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES);
typedef Block<ResultType, Dim, OtherCols, int(MatrixType::RowsAtCompileTime)==Dim> TopLeftLhs;
ResultType res(other.rows(),other.cols());
TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() = T.affine() * other;
res.row(OtherRows-1) = other.row(OtherRows-1);
return res;
}
};
template< typename TransformType, typename MatrixType >
struct transform_right_product_impl< TransformType, MatrixType, 2 >
{
enum {
Dim = TransformType::Dim,
HDim = TransformType::HDim,
OtherRows = MatrixType::RowsAtCompileTime,
OtherCols = MatrixType::ColsAtCompileTime
};
typedef typename MatrixType::PlainObject ResultType;
static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other)
{
EIGEN_STATIC_ASSERT(OtherRows==Dim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES);
typedef Block<ResultType, Dim, OtherCols, true> TopLeftLhs;
ResultType res(Replicate<typename TransformType::ConstTranslationPart, 1, OtherCols>(T.translation(),1,other.cols()));
TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() += T.linear() * other;
return res;
}
};
/**********************************************************
*** Specializations of operator* with lhs EigenBase ***
**********************************************************/
// generic HDim x HDim matrix * T => Projective
template<typename Other,int Mode, int Options, int Dim, int HDim>
struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, HDim,HDim>
{
typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType;
typedef typename TransformType::MatrixType MatrixType;
typedef Transform<typename Other::Scalar,Dim,Projective,Options> ResultType;
static ResultType run(const Other& other,const TransformType& tr)
{ return ResultType(other * tr.matrix()); }
};
// generic HDim x HDim matrix * AffineCompact => Projective
template<typename Other, int Options, int Dim, int HDim>
struct transform_left_product_impl<Other,AffineCompact,Options,Dim,HDim, HDim,HDim>
{
typedef Transform<typename Other::Scalar,Dim,AffineCompact,Options> TransformType;
typedef typename TransformType::MatrixType MatrixType;
typedef Transform<typename Other::Scalar,Dim,Projective,Options> ResultType;
static ResultType run(const Other& other,const TransformType& tr)
{
ResultType res;
res.matrix().noalias() = other.template block<HDim,Dim>(0,0) * tr.matrix();
res.matrix().col(Dim) += other.col(Dim);
return res;
}
};
// affine matrix * T
template<typename Other,int Mode, int Options, int Dim, int HDim>
struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, Dim,HDim>
{
typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType;
typedef typename TransformType::MatrixType MatrixType;
typedef TransformType ResultType;
static ResultType run(const Other& other,const TransformType& tr)
{
ResultType res;
res.affine().noalias() = other * tr.matrix();
res.matrix().row(Dim) = tr.matrix().row(Dim);
return res;
}
};
// affine matrix * AffineCompact
template<typename Other, int Options, int Dim, int HDim>
struct transform_left_product_impl<Other,AffineCompact,Options,Dim,HDim, Dim,HDim>
{
typedef Transform<typename Other::Scalar,Dim,AffineCompact,Options> TransformType;
typedef typename TransformType::MatrixType MatrixType;
typedef TransformType ResultType;
static ResultType run(const Other& other,const TransformType& tr)
{
ResultType res;
res.matrix().noalias() = other.template block<Dim,Dim>(0,0) * tr.matrix();
res.translation() += other.col(Dim);
return res;
}
};
// linear matrix * T
template<typename Other,int Mode, int Options, int Dim, int HDim>
struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, Dim,Dim>
{
typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType;
typedef typename TransformType::MatrixType MatrixType;
typedef TransformType ResultType;
static ResultType run(const Other& other, const TransformType& tr)
{
TransformType res;
if(Mode!=int(AffineCompact))
res.matrix().row(Dim) = tr.matrix().row(Dim);
res.matrix().template topRows<Dim>().noalias()
= other * tr.matrix().template topRows<Dim>();
return res;
}
};
/**********************************************************
*** Specializations of operator* with another Transform ***
**********************************************************/
template<typename Scalar, int Dim, int LhsMode, int LhsOptions, int RhsMode, int RhsOptions>
struct transform_transform_product_impl<Transform<Scalar,Dim,LhsMode,LhsOptions>,Transform<Scalar,Dim,RhsMode,RhsOptions>,false >
{
enum { ResultMode = transform_product_result<LhsMode,RhsMode>::Mode };
typedef Transform<Scalar,Dim,LhsMode,LhsOptions> Lhs;
typedef Transform<Scalar,Dim,RhsMode,RhsOptions> Rhs;
typedef Transform<Scalar,Dim,ResultMode,LhsOptions> ResultType;
static ResultType run(const Lhs& lhs, const Rhs& rhs)
{
ResultType res;
res.linear() = lhs.linear() * rhs.linear();
res.translation() = lhs.linear() * rhs.translation() + lhs.translation();
res.makeAffine();
return res;
}
};
template<typename Scalar, int Dim, int LhsMode, int LhsOptions, int RhsMode, int RhsOptions>
struct transform_transform_product_impl<Transform<Scalar,Dim,LhsMode,LhsOptions>,Transform<Scalar,Dim,RhsMode,RhsOptions>,true >
{
typedef Transform<Scalar,Dim,LhsMode,LhsOptions> Lhs;
typedef Transform<Scalar,Dim,RhsMode,RhsOptions> Rhs;
typedef Transform<Scalar,Dim,Projective> ResultType;
static ResultType run(const Lhs& lhs, const Rhs& rhs)
{
return ResultType( lhs.matrix() * rhs.matrix() );
}
};
template<typename Scalar, int Dim, int LhsOptions, int RhsOptions>
struct transform_transform_product_impl<Transform<Scalar,Dim,AffineCompact,LhsOptions>,Transform<Scalar,Dim,Projective,RhsOptions>,true >
{
typedef Transform<Scalar,Dim,AffineCompact,LhsOptions> Lhs;
typedef Transform<Scalar,Dim,Projective,RhsOptions> Rhs;
typedef Transform<Scalar,Dim,Projective> ResultType;
static ResultType run(const Lhs& lhs, const Rhs& rhs)
{
ResultType res;
res.matrix().template topRows<Dim>() = lhs.matrix() * rhs.matrix();
res.matrix().row(Dim) = rhs.matrix().row(Dim);
return res;
}
};
template<typename Scalar, int Dim, int LhsOptions, int RhsOptions>
struct transform_transform_product_impl<Transform<Scalar,Dim,Projective,LhsOptions>,Transform<Scalar,Dim,AffineCompact,RhsOptions>,true >
{
typedef Transform<Scalar,Dim,Projective,LhsOptions> Lhs;
typedef Transform<Scalar,Dim,AffineCompact,RhsOptions> Rhs;
typedef Transform<Scalar,Dim,Projective> ResultType;
static ResultType run(const Lhs& lhs, const Rhs& rhs)
{
ResultType res(lhs.matrix().template leftCols<Dim>() * rhs.matrix());
res.matrix().col(Dim) += lhs.matrix().col(Dim);
return res;
}
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_TRANSFORM_H
Event Timeline
Log In to Comment