Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F92163979
FullPivHouseholderQR.h
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sun, Nov 17, 22:24
Size
22 KB
Mime Type
text/x-c
Expires
Tue, Nov 19, 22:24 (2 d)
Engine
blob
Format
Raw Data
Handle
22382952
Attached To
rLAMMPS lammps
FullPivHouseholderQR.h
View Options
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
#define EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
namespace
Eigen
{
namespace
internal
{
template
<
typename
MatrixType
>
struct
FullPivHouseholderQRMatrixQReturnType
;
template
<
typename
MatrixType
>
struct
traits
<
FullPivHouseholderQRMatrixQReturnType
<
MatrixType
>
>
{
typedef
typename
MatrixType
::
PlainObject
ReturnType
;
};
}
/** \ingroup QR_Module
*
* \class FullPivHouseholderQR
*
* \brief Householder rank-revealing QR decomposition of a matrix with full pivoting
*
* \param MatrixType the type of the matrix of which we are computing the QR decomposition
*
* This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b Q and \b R
* such that
* \f[
* \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \mathbf{R}
* \f]
* by using Householder transformations. Here, \b P is a permutation matrix, \b Q a unitary matrix and \b R an
* upper triangular matrix.
*
* This decomposition performs a very prudent full pivoting in order to be rank-revealing and achieve optimal
* numerical stability. The trade-off is that it is slower than HouseholderQR and ColPivHouseholderQR.
*
* \sa MatrixBase::fullPivHouseholderQr()
*/
template
<
typename
_MatrixType
>
class
FullPivHouseholderQR
{
public:
typedef
_MatrixType
MatrixType
;
enum
{
RowsAtCompileTime
=
MatrixType
::
RowsAtCompileTime
,
ColsAtCompileTime
=
MatrixType
::
ColsAtCompileTime
,
Options
=
MatrixType
::
Options
,
MaxRowsAtCompileTime
=
MatrixType
::
MaxRowsAtCompileTime
,
MaxColsAtCompileTime
=
MatrixType
::
MaxColsAtCompileTime
};
typedef
typename
MatrixType
::
Scalar
Scalar
;
typedef
typename
MatrixType
::
RealScalar
RealScalar
;
typedef
typename
MatrixType
::
Index
Index
;
typedef
internal
::
FullPivHouseholderQRMatrixQReturnType
<
MatrixType
>
MatrixQReturnType
;
typedef
typename
internal
::
plain_diag_type
<
MatrixType
>::
type
HCoeffsType
;
typedef
Matrix
<
Index
,
1
,
EIGEN_SIZE_MIN_PREFER_DYNAMIC
(
ColsAtCompileTime
,
RowsAtCompileTime
),
RowMajor
,
1
,
EIGEN_SIZE_MIN_PREFER_FIXED
(
MaxColsAtCompileTime
,
MaxRowsAtCompileTime
)
>
IntDiagSizeVectorType
;
typedef
PermutationMatrix
<
ColsAtCompileTime
,
MaxColsAtCompileTime
>
PermutationType
;
typedef
typename
internal
::
plain_row_type
<
MatrixType
>::
type
RowVectorType
;
typedef
typename
internal
::
plain_col_type
<
MatrixType
>::
type
ColVectorType
;
/** \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via FullPivHouseholderQR::compute(const MatrixType&).
*/
FullPivHouseholderQR
()
:
m_qr
(),
m_hCoeffs
(),
m_rows_transpositions
(),
m_cols_transpositions
(),
m_cols_permutation
(),
m_temp
(),
m_isInitialized
(
false
),
m_usePrescribedThreshold
(
false
)
{}
/** \brief Default Constructor with memory preallocation
*
* Like the default constructor but with preallocation of the internal data
* according to the specified problem \a size.
* \sa FullPivHouseholderQR()
*/
FullPivHouseholderQR
(
Index
rows
,
Index
cols
)
:
m_qr
(
rows
,
cols
),
m_hCoeffs
((
std
::
min
)(
rows
,
cols
)),
m_rows_transpositions
((
std
::
min
)(
rows
,
cols
)),
m_cols_transpositions
((
std
::
min
)(
rows
,
cols
)),
m_cols_permutation
(
cols
),
m_temp
(
cols
),
m_isInitialized
(
false
),
m_usePrescribedThreshold
(
false
)
{}
/** \brief Constructs a QR factorization from a given matrix
*
* This constructor computes the QR factorization of the matrix \a matrix by calling
* the method compute(). It is a short cut for:
*
* \code
* FullPivHouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols());
* qr.compute(matrix);
* \endcode
*
* \sa compute()
*/
FullPivHouseholderQR
(
const
MatrixType
&
matrix
)
:
m_qr
(
matrix
.
rows
(),
matrix
.
cols
()),
m_hCoeffs
((
std
::
min
)(
matrix
.
rows
(),
matrix
.
cols
())),
m_rows_transpositions
((
std
::
min
)(
matrix
.
rows
(),
matrix
.
cols
())),
m_cols_transpositions
((
std
::
min
)(
matrix
.
rows
(),
matrix
.
cols
())),
m_cols_permutation
(
matrix
.
cols
()),
m_temp
(
matrix
.
cols
()),
m_isInitialized
(
false
),
m_usePrescribedThreshold
(
false
)
{
compute
(
matrix
);
}
/** This method finds a solution x to the equation Ax=b, where A is the matrix of which
* \c *this is the QR decomposition.
*
* \param b the right-hand-side of the equation to solve.
*
* \returns the exact or least-square solution if the rank is greater or equal to the number of columns of A,
* and an arbitrary solution otherwise.
*
* \note The case where b is a matrix is not yet implemented. Also, this
* code is space inefficient.
*
* \note_about_checking_solutions
*
* \note_about_arbitrary_choice_of_solution
*
* Example: \include FullPivHouseholderQR_solve.cpp
* Output: \verbinclude FullPivHouseholderQR_solve.out
*/
template
<
typename
Rhs
>
inline
const
internal
::
solve_retval
<
FullPivHouseholderQR
,
Rhs
>
solve
(
const
MatrixBase
<
Rhs
>&
b
)
const
{
eigen_assert
(
m_isInitialized
&&
"FullPivHouseholderQR is not initialized."
);
return
internal
::
solve_retval
<
FullPivHouseholderQR
,
Rhs
>
(
*
this
,
b
.
derived
());
}
/** \returns Expression object representing the matrix Q
*/
MatrixQReturnType
matrixQ
(
void
)
const
;
/** \returns a reference to the matrix where the Householder QR decomposition is stored
*/
const
MatrixType
&
matrixQR
()
const
{
eigen_assert
(
m_isInitialized
&&
"FullPivHouseholderQR is not initialized."
);
return
m_qr
;
}
FullPivHouseholderQR
&
compute
(
const
MatrixType
&
matrix
);
/** \returns a const reference to the column permutation matrix */
const
PermutationType
&
colsPermutation
()
const
{
eigen_assert
(
m_isInitialized
&&
"FullPivHouseholderQR is not initialized."
);
return
m_cols_permutation
;
}
/** \returns a const reference to the vector of indices representing the rows transpositions */
const
IntDiagSizeVectorType
&
rowsTranspositions
()
const
{
eigen_assert
(
m_isInitialized
&&
"FullPivHouseholderQR is not initialized."
);
return
m_rows_transpositions
;
}
/** \returns the absolute value of the determinant of the matrix of which
* *this is the QR decomposition. It has only linear complexity
* (that is, O(n) where n is the dimension of the square matrix)
* as the QR decomposition has already been computed.
*
* \note This is only for square matrices.
*
* \warning a determinant can be very big or small, so for matrices
* of large enough dimension, there is a risk of overflow/underflow.
* One way to work around that is to use logAbsDeterminant() instead.
*
* \sa logAbsDeterminant(), MatrixBase::determinant()
*/
typename
MatrixType
::
RealScalar
absDeterminant
()
const
;
/** \returns the natural log of the absolute value of the determinant of the matrix of which
* *this is the QR decomposition. It has only linear complexity
* (that is, O(n) where n is the dimension of the square matrix)
* as the QR decomposition has already been computed.
*
* \note This is only for square matrices.
*
* \note This method is useful to work around the risk of overflow/underflow that's inherent
* to determinant computation.
*
* \sa absDeterminant(), MatrixBase::determinant()
*/
typename
MatrixType
::
RealScalar
logAbsDeterminant
()
const
;
/** \returns the rank of the matrix of which *this is the QR decomposition.
*
* \note This method has to determine which pivots should be considered nonzero.
* For that, it uses the threshold value that you can control by calling
* setThreshold(const RealScalar&).
*/
inline
Index
rank
()
const
{
using
std
::
abs
;
eigen_assert
(
m_isInitialized
&&
"FullPivHouseholderQR is not initialized."
);
RealScalar
premultiplied_threshold
=
abs
(
m_maxpivot
)
*
threshold
();
Index
result
=
0
;
for
(
Index
i
=
0
;
i
<
m_nonzero_pivots
;
++
i
)
result
+=
(
abs
(
m_qr
.
coeff
(
i
,
i
))
>
premultiplied_threshold
);
return
result
;
}
/** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition.
*
* \note This method has to determine which pivots should be considered nonzero.
* For that, it uses the threshold value that you can control by calling
* setThreshold(const RealScalar&).
*/
inline
Index
dimensionOfKernel
()
const
{
eigen_assert
(
m_isInitialized
&&
"FullPivHouseholderQR is not initialized."
);
return
cols
()
-
rank
();
}
/** \returns true if the matrix of which *this is the QR decomposition represents an injective
* linear map, i.e. has trivial kernel; false otherwise.
*
* \note This method has to determine which pivots should be considered nonzero.
* For that, it uses the threshold value that you can control by calling
* setThreshold(const RealScalar&).
*/
inline
bool
isInjective
()
const
{
eigen_assert
(
m_isInitialized
&&
"FullPivHouseholderQR is not initialized."
);
return
rank
()
==
cols
();
}
/** \returns true if the matrix of which *this is the QR decomposition represents a surjective
* linear map; false otherwise.
*
* \note This method has to determine which pivots should be considered nonzero.
* For that, it uses the threshold value that you can control by calling
* setThreshold(const RealScalar&).
*/
inline
bool
isSurjective
()
const
{
eigen_assert
(
m_isInitialized
&&
"FullPivHouseholderQR is not initialized."
);
return
rank
()
==
rows
();
}
/** \returns true if the matrix of which *this is the QR decomposition is invertible.
*
* \note This method has to determine which pivots should be considered nonzero.
* For that, it uses the threshold value that you can control by calling
* setThreshold(const RealScalar&).
*/
inline
bool
isInvertible
()
const
{
eigen_assert
(
m_isInitialized
&&
"FullPivHouseholderQR is not initialized."
);
return
isInjective
()
&&
isSurjective
();
}
/** \returns the inverse of the matrix of which *this is the QR decomposition.
*
* \note If this matrix is not invertible, the returned matrix has undefined coefficients.
* Use isInvertible() to first determine whether this matrix is invertible.
*/
inline
const
internal
::
solve_retval
<
FullPivHouseholderQR
,
typename
MatrixType
::
IdentityReturnType
>
inverse
()
const
{
eigen_assert
(
m_isInitialized
&&
"FullPivHouseholderQR is not initialized."
);
return
internal
::
solve_retval
<
FullPivHouseholderQR
,
typename
MatrixType
::
IdentityReturnType
>
(
*
this
,
MatrixType
::
Identity
(
m_qr
.
rows
(),
m_qr
.
cols
()));
}
inline
Index
rows
()
const
{
return
m_qr
.
rows
();
}
inline
Index
cols
()
const
{
return
m_qr
.
cols
();
}
/** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q.
*
* For advanced uses only.
*/
const
HCoeffsType
&
hCoeffs
()
const
{
return
m_hCoeffs
;
}
/** Allows to prescribe a threshold to be used by certain methods, such as rank(),
* who need to determine when pivots are to be considered nonzero. This is not used for the
* QR decomposition itself.
*
* When it needs to get the threshold value, Eigen calls threshold(). By default, this
* uses a formula to automatically determine a reasonable threshold.
* Once you have called the present method setThreshold(const RealScalar&),
* your value is used instead.
*
* \param threshold The new value to use as the threshold.
*
* A pivot will be considered nonzero if its absolute value is strictly greater than
* \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
* where maxpivot is the biggest pivot.
*
* If you want to come back to the default behavior, call setThreshold(Default_t)
*/
FullPivHouseholderQR
&
setThreshold
(
const
RealScalar
&
threshold
)
{
m_usePrescribedThreshold
=
true
;
m_prescribedThreshold
=
threshold
;
return
*
this
;
}
/** Allows to come back to the default behavior, letting Eigen use its default formula for
* determining the threshold.
*
* You should pass the special object Eigen::Default as parameter here.
* \code qr.setThreshold(Eigen::Default); \endcode
*
* See the documentation of setThreshold(const RealScalar&).
*/
FullPivHouseholderQR
&
setThreshold
(
Default_t
)
{
m_usePrescribedThreshold
=
false
;
return
*
this
;
}
/** Returns the threshold that will be used by certain methods such as rank().
*
* See the documentation of setThreshold(const RealScalar&).
*/
RealScalar
threshold
()
const
{
eigen_assert
(
m_isInitialized
||
m_usePrescribedThreshold
);
return
m_usePrescribedThreshold
?
m_prescribedThreshold
// this formula comes from experimenting (see "LU precision tuning" thread on the list)
// and turns out to be identical to Higham's formula used already in LDLt.
:
NumTraits
<
Scalar
>::
epsilon
()
*
RealScalar
(
m_qr
.
diagonalSize
());
}
/** \returns the number of nonzero pivots in the QR decomposition.
* Here nonzero is meant in the exact sense, not in a fuzzy sense.
* So that notion isn't really intrinsically interesting, but it is
* still useful when implementing algorithms.
*
* \sa rank()
*/
inline
Index
nonzeroPivots
()
const
{
eigen_assert
(
m_isInitialized
&&
"LU is not initialized."
);
return
m_nonzero_pivots
;
}
/** \returns the absolute value of the biggest pivot, i.e. the biggest
* diagonal coefficient of U.
*/
RealScalar
maxPivot
()
const
{
return
m_maxpivot
;
}
protected:
static
void
check_template_parameters
()
{
EIGEN_STATIC_ASSERT_NON_INTEGER
(
Scalar
);
}
MatrixType
m_qr
;
HCoeffsType
m_hCoeffs
;
IntDiagSizeVectorType
m_rows_transpositions
;
IntDiagSizeVectorType
m_cols_transpositions
;
PermutationType
m_cols_permutation
;
RowVectorType
m_temp
;
bool
m_isInitialized
,
m_usePrescribedThreshold
;
RealScalar
m_prescribedThreshold
,
m_maxpivot
;
Index
m_nonzero_pivots
;
RealScalar
m_precision
;
Index
m_det_pq
;
};
template
<
typename
MatrixType
>
typename
MatrixType
::
RealScalar
FullPivHouseholderQR
<
MatrixType
>::
absDeterminant
()
const
{
using
std
::
abs
;
eigen_assert
(
m_isInitialized
&&
"FullPivHouseholderQR is not initialized."
);
eigen_assert
(
m_qr
.
rows
()
==
m_qr
.
cols
()
&&
"You can't take the determinant of a non-square matrix!"
);
return
abs
(
m_qr
.
diagonal
().
prod
());
}
template
<
typename
MatrixType
>
typename
MatrixType
::
RealScalar
FullPivHouseholderQR
<
MatrixType
>::
logAbsDeterminant
()
const
{
eigen_assert
(
m_isInitialized
&&
"FullPivHouseholderQR is not initialized."
);
eigen_assert
(
m_qr
.
rows
()
==
m_qr
.
cols
()
&&
"You can't take the determinant of a non-square matrix!"
);
return
m_qr
.
diagonal
().
cwiseAbs
().
array
().
log
().
sum
();
}
/** Performs the QR factorization of the given matrix \a matrix. The result of
* the factorization is stored into \c *this, and a reference to \c *this
* is returned.
*
* \sa class FullPivHouseholderQR, FullPivHouseholderQR(const MatrixType&)
*/
template
<
typename
MatrixType
>
FullPivHouseholderQR
<
MatrixType
>&
FullPivHouseholderQR
<
MatrixType
>::
compute
(
const
MatrixType
&
matrix
)
{
check_template_parameters
();
using
std
::
abs
;
Index
rows
=
matrix
.
rows
();
Index
cols
=
matrix
.
cols
();
Index
size
=
(
std
::
min
)(
rows
,
cols
);
m_qr
=
matrix
;
m_hCoeffs
.
resize
(
size
);
m_temp
.
resize
(
cols
);
m_precision
=
NumTraits
<
Scalar
>::
epsilon
()
*
RealScalar
(
size
);
m_rows_transpositions
.
resize
(
size
);
m_cols_transpositions
.
resize
(
size
);
Index
number_of_transpositions
=
0
;
RealScalar
biggest
(
0
);
m_nonzero_pivots
=
size
;
// the generic case is that in which all pivots are nonzero (invertible case)
m_maxpivot
=
RealScalar
(
0
);
for
(
Index
k
=
0
;
k
<
size
;
++
k
)
{
Index
row_of_biggest_in_corner
,
col_of_biggest_in_corner
;
RealScalar
biggest_in_corner
;
biggest_in_corner
=
m_qr
.
bottomRightCorner
(
rows
-
k
,
cols
-
k
)
.
cwiseAbs
()
.
maxCoeff
(
&
row_of_biggest_in_corner
,
&
col_of_biggest_in_corner
);
row_of_biggest_in_corner
+=
k
;
col_of_biggest_in_corner
+=
k
;
if
(
k
==
0
)
biggest
=
biggest_in_corner
;
// if the corner is negligible, then we have less than full rank, and we can finish early
if
(
internal
::
isMuchSmallerThan
(
biggest_in_corner
,
biggest
,
m_precision
))
{
m_nonzero_pivots
=
k
;
for
(
Index
i
=
k
;
i
<
size
;
i
++
)
{
m_rows_transpositions
.
coeffRef
(
i
)
=
i
;
m_cols_transpositions
.
coeffRef
(
i
)
=
i
;
m_hCoeffs
.
coeffRef
(
i
)
=
Scalar
(
0
);
}
break
;
}
m_rows_transpositions
.
coeffRef
(
k
)
=
row_of_biggest_in_corner
;
m_cols_transpositions
.
coeffRef
(
k
)
=
col_of_biggest_in_corner
;
if
(
k
!=
row_of_biggest_in_corner
)
{
m_qr
.
row
(
k
).
tail
(
cols
-
k
).
swap
(
m_qr
.
row
(
row_of_biggest_in_corner
).
tail
(
cols
-
k
));
++
number_of_transpositions
;
}
if
(
k
!=
col_of_biggest_in_corner
)
{
m_qr
.
col
(
k
).
swap
(
m_qr
.
col
(
col_of_biggest_in_corner
));
++
number_of_transpositions
;
}
RealScalar
beta
;
m_qr
.
col
(
k
).
tail
(
rows
-
k
).
makeHouseholderInPlace
(
m_hCoeffs
.
coeffRef
(
k
),
beta
);
m_qr
.
coeffRef
(
k
,
k
)
=
beta
;
// remember the maximum absolute value of diagonal coefficients
if
(
abs
(
beta
)
>
m_maxpivot
)
m_maxpivot
=
abs
(
beta
);
m_qr
.
bottomRightCorner
(
rows
-
k
,
cols
-
k
-
1
)
.
applyHouseholderOnTheLeft
(
m_qr
.
col
(
k
).
tail
(
rows
-
k
-
1
),
m_hCoeffs
.
coeffRef
(
k
),
&
m_temp
.
coeffRef
(
k
+
1
));
}
m_cols_permutation
.
setIdentity
(
cols
);
for
(
Index
k
=
0
;
k
<
size
;
++
k
)
m_cols_permutation
.
applyTranspositionOnTheRight
(
k
,
m_cols_transpositions
.
coeff
(
k
));
m_det_pq
=
(
number_of_transpositions
%
2
)
?
-
1
:
1
;
m_isInitialized
=
true
;
return
*
this
;
}
namespace
internal
{
template
<
typename
_MatrixType
,
typename
Rhs
>
struct
solve_retval
<
FullPivHouseholderQR
<
_MatrixType
>
,
Rhs
>
:
solve_retval_base
<
FullPivHouseholderQR
<
_MatrixType
>
,
Rhs
>
{
EIGEN_MAKE_SOLVE_HELPERS
(
FullPivHouseholderQR
<
_MatrixType
>
,
Rhs
)
template
<
typename
Dest
>
void
evalTo
(
Dest
&
dst
)
const
{
const
Index
rows
=
dec
().
rows
(),
cols
=
dec
().
cols
();
eigen_assert
(
rhs
().
rows
()
==
rows
);
// FIXME introduce nonzeroPivots() and use it here. and more generally,
// make the same improvements in this dec as in FullPivLU.
if
(
dec
().
rank
()
==
0
)
{
dst
.
setZero
();
return
;
}
typename
Rhs
::
PlainObject
c
(
rhs
());
Matrix
<
Scalar
,
1
,
Rhs
::
ColsAtCompileTime
>
temp
(
rhs
().
cols
());
for
(
Index
k
=
0
;
k
<
dec
().
rank
();
++
k
)
{
Index
remainingSize
=
rows
-
k
;
c
.
row
(
k
).
swap
(
c
.
row
(
dec
().
rowsTranspositions
().
coeff
(
k
)));
c
.
bottomRightCorner
(
remainingSize
,
rhs
().
cols
())
.
applyHouseholderOnTheLeft
(
dec
().
matrixQR
().
col
(
k
).
tail
(
remainingSize
-
1
),
dec
().
hCoeffs
().
coeff
(
k
),
&
temp
.
coeffRef
(
0
));
}
dec
().
matrixQR
()
.
topLeftCorner
(
dec
().
rank
(),
dec
().
rank
())
.
template
triangularView
<
Upper
>
()
.
solveInPlace
(
c
.
topRows
(
dec
().
rank
()));
for
(
Index
i
=
0
;
i
<
dec
().
rank
();
++
i
)
dst
.
row
(
dec
().
colsPermutation
().
indices
().
coeff
(
i
))
=
c
.
row
(
i
);
for
(
Index
i
=
dec
().
rank
();
i
<
cols
;
++
i
)
dst
.
row
(
dec
().
colsPermutation
().
indices
().
coeff
(
i
)).
setZero
();
}
};
/** \ingroup QR_Module
*
* \brief Expression type for return value of FullPivHouseholderQR::matrixQ()
*
* \tparam MatrixType type of underlying dense matrix
*/
template
<
typename
MatrixType
>
struct
FullPivHouseholderQRMatrixQReturnType
:
public
ReturnByValue
<
FullPivHouseholderQRMatrixQReturnType
<
MatrixType
>
>
{
public:
typedef
typename
MatrixType
::
Index
Index
;
typedef
typename
FullPivHouseholderQR
<
MatrixType
>::
IntDiagSizeVectorType
IntDiagSizeVectorType
;
typedef
typename
internal
::
plain_diag_type
<
MatrixType
>::
type
HCoeffsType
;
typedef
Matrix
<
typename
MatrixType
::
Scalar
,
1
,
MatrixType
::
RowsAtCompileTime
,
RowMajor
,
1
,
MatrixType
::
MaxRowsAtCompileTime
>
WorkVectorType
;
FullPivHouseholderQRMatrixQReturnType
(
const
MatrixType
&
qr
,
const
HCoeffsType
&
hCoeffs
,
const
IntDiagSizeVectorType
&
rowsTranspositions
)
:
m_qr
(
qr
),
m_hCoeffs
(
hCoeffs
),
m_rowsTranspositions
(
rowsTranspositions
)
{}
template
<
typename
ResultType
>
void
evalTo
(
ResultType
&
result
)
const
{
const
Index
rows
=
m_qr
.
rows
();
WorkVectorType
workspace
(
rows
);
evalTo
(
result
,
workspace
);
}
template
<
typename
ResultType
>
void
evalTo
(
ResultType
&
result
,
WorkVectorType
&
workspace
)
const
{
using
numext
::
conj
;
// compute the product H'_0 H'_1 ... H'_n-1,
// where H_k is the k-th Householder transformation I - h_k v_k v_k'
// and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...]
const
Index
rows
=
m_qr
.
rows
();
const
Index
cols
=
m_qr
.
cols
();
const
Index
size
=
(
std
::
min
)(
rows
,
cols
);
workspace
.
resize
(
rows
);
result
.
setIdentity
(
rows
,
rows
);
for
(
Index
k
=
size
-
1
;
k
>=
0
;
k
--
)
{
result
.
block
(
k
,
k
,
rows
-
k
,
rows
-
k
)
.
applyHouseholderOnTheLeft
(
m_qr
.
col
(
k
).
tail
(
rows
-
k
-
1
),
conj
(
m_hCoeffs
.
coeff
(
k
)),
&
workspace
.
coeffRef
(
k
));
result
.
row
(
k
).
swap
(
result
.
row
(
m_rowsTranspositions
.
coeff
(
k
)));
}
}
Index
rows
()
const
{
return
m_qr
.
rows
();
}
Index
cols
()
const
{
return
m_qr
.
rows
();
}
protected:
typename
MatrixType
::
Nested
m_qr
;
typename
HCoeffsType
::
Nested
m_hCoeffs
;
typename
IntDiagSizeVectorType
::
Nested
m_rowsTranspositions
;
};
}
// end namespace internal
template
<
typename
MatrixType
>
inline
typename
FullPivHouseholderQR
<
MatrixType
>::
MatrixQReturnType
FullPivHouseholderQR
<
MatrixType
>::
matrixQ
()
const
{
eigen_assert
(
m_isInitialized
&&
"FullPivHouseholderQR is not initialized."
);
return
MatrixQReturnType
(
m_qr
,
m_hCoeffs
,
m_rows_transpositions
);
}
/** \return the full-pivoting Householder QR decomposition of \c *this.
*
* \sa class FullPivHouseholderQR
*/
template
<
typename
Derived
>
const
FullPivHouseholderQR
<
typename
MatrixBase
<
Derived
>::
PlainObject
>
MatrixBase
<
Derived
>::
fullPivHouseholderQr
()
const
{
return
FullPivHouseholderQR
<
PlainObject
>
(
eval
());
}
}
// end namespace Eigen
#endif
// EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
Event Timeline
Log In to Comment