Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90932200
angle_class2.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Nov 6, 03:35
Size
13 KB
Mime Type
text/x-c
Expires
Fri, Nov 8, 03:35 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22159704
Attached To
rLAMMPS lammps
angle_class2.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Eric Simon (Cray)
------------------------------------------------------------------------- */
#include "math.h"
#include "stdlib.h"
#include "angle_class2.h"
#include "atom.h"
#include "neighbor.h"
#include "domain.h"
#include "comm.h"
#include "force.h"
#include "memory.h"
#include "error.h"
using
namespace
LAMMPS_NS
;
#define SMALL 0.001
/* ---------------------------------------------------------------------- */
AngleClass2
::
AngleClass2
(
LAMMPS
*
lmp
)
:
Angle
(
lmp
)
{}
/* ---------------------------------------------------------------------- */
AngleClass2
::~
AngleClass2
()
{
if
(
allocated
)
{
memory
->
sfree
(
setflag
);
memory
->
sfree
(
setflag_a
);
memory
->
sfree
(
setflag_bb
);
memory
->
sfree
(
setflag_ba
);
memory
->
sfree
(
theta0
);
memory
->
sfree
(
k2
);
memory
->
sfree
(
k3
);
memory
->
sfree
(
k4
);
memory
->
sfree
(
bb_k
);
memory
->
sfree
(
bb_r1
);
memory
->
sfree
(
bb_r2
);
memory
->
sfree
(
ba_k1
);
memory
->
sfree
(
ba_k2
);
memory
->
sfree
(
ba_r1
);
memory
->
sfree
(
ba_r2
);
}
}
/* ---------------------------------------------------------------------- */
void
AngleClass2
::
compute
(
int
eflag
,
int
vflag
)
{
int
i1
,
i2
,
i3
,
n
,
type
;
double
delx1
,
dely1
,
delz1
,
delx2
,
dely2
,
delz2
;
double
eangle
,
f1
[
3
],
f3
[
3
];
double
dtheta
,
dtheta2
,
dtheta3
,
dtheta4
,
de_angle
;
double
dr1
,
dr2
,
tk1
,
tk2
,
aa1
,
aa2
,
aa11
,
aa12
,
aa21
,
aa22
;
double
rsq1
,
rsq2
,
r1
,
r2
,
c
,
s
,
a
,
a11
,
a12
,
a22
,
b1
,
b2
;
double
vx11
,
vx12
,
vy11
,
vy12
,
vz11
,
vz12
,
vx21
,
vx22
,
vy21
,
vy22
,
vz21
,
vz22
;
eangle
=
0.0
;
if
(
eflag
||
vflag
)
ev_setup
(
eflag
,
vflag
);
else
evflag
=
0
;
double
**
x
=
atom
->
x
;
double
**
f
=
atom
->
f
;
int
**
anglelist
=
neighbor
->
anglelist
;
int
nanglelist
=
neighbor
->
nanglelist
;
int
nlocal
=
atom
->
nlocal
;
int
newton_bond
=
force
->
newton_bond
;
for
(
n
=
0
;
n
<
nanglelist
;
n
++
)
{
i1
=
anglelist
[
n
][
0
];
i2
=
anglelist
[
n
][
1
];
i3
=
anglelist
[
n
][
2
];
type
=
anglelist
[
n
][
3
];
// 1st bond
delx1
=
x
[
i1
][
0
]
-
x
[
i2
][
0
];
dely1
=
x
[
i1
][
1
]
-
x
[
i2
][
1
];
delz1
=
x
[
i1
][
2
]
-
x
[
i2
][
2
];
domain
->
minimum_image
(
delx1
,
dely1
,
delz1
);
rsq1
=
delx1
*
delx1
+
dely1
*
dely1
+
delz1
*
delz1
;
r1
=
sqrt
(
rsq1
);
// 2nd bond
delx2
=
x
[
i3
][
0
]
-
x
[
i2
][
0
];
dely2
=
x
[
i3
][
1
]
-
x
[
i2
][
1
];
delz2
=
x
[
i3
][
2
]
-
x
[
i2
][
2
];
domain
->
minimum_image
(
delx2
,
dely2
,
delz2
);
rsq2
=
delx2
*
delx2
+
dely2
*
dely2
+
delz2
*
delz2
;
r2
=
sqrt
(
rsq2
);
// angle (cos and sin)
c
=
delx1
*
delx2
+
dely1
*
dely2
+
delz1
*
delz2
;
c
/=
r1
*
r2
;
if
(
c
>
1.0
)
c
=
1.0
;
if
(
c
<
-
1.0
)
c
=
-
1.0
;
s
=
sqrt
(
1.0
-
c
*
c
);
if
(
s
<
SMALL
)
s
=
SMALL
;
s
=
1.0
/
s
;
// force & energy for angle term
dtheta
=
acos
(
c
)
-
theta0
[
type
];
dtheta2
=
dtheta
*
dtheta
;
dtheta3
=
dtheta2
*
dtheta
;
dtheta4
=
dtheta3
*
dtheta
;
de_angle
=
2.0
*
k2
[
type
]
*
dtheta
+
3.0
*
k3
[
type
]
*
dtheta2
+
4.0
*
k4
[
type
]
*
dtheta3
;
a
=
-
de_angle
*
s
;
a11
=
a
*
c
/
rsq1
;
a12
=
-
a
/
(
r1
*
r2
);
a22
=
a
*
c
/
rsq2
;
f1
[
0
]
=
a11
*
delx1
+
a12
*
delx2
;
f1
[
1
]
=
a11
*
dely1
+
a12
*
dely2
;
f1
[
2
]
=
a11
*
delz1
+
a12
*
delz2
;
f3
[
0
]
=
a22
*
delx2
+
a12
*
delx1
;
f3
[
1
]
=
a22
*
dely2
+
a12
*
dely1
;
f3
[
2
]
=
a22
*
delz2
+
a12
*
delz1
;
if
(
eflag
)
eangle
=
k2
[
type
]
*
dtheta2
+
k3
[
type
]
*
dtheta3
+
k4
[
type
]
*
dtheta4
;
// force & energy for bond-bond term
dr1
=
r1
-
bb_r1
[
type
];
dr2
=
r2
-
bb_r2
[
type
];
tk1
=
bb_k
[
type
]
*
dr1
;
tk2
=
bb_k
[
type
]
*
dr2
;
f1
[
0
]
-=
delx1
*
tk2
/
r1
;
f1
[
1
]
-=
dely1
*
tk2
/
r1
;
f1
[
2
]
-=
delz1
*
tk2
/
r1
;
f3
[
0
]
-=
delx2
*
tk1
/
r2
;
f3
[
1
]
-=
dely2
*
tk1
/
r2
;
f3
[
2
]
-=
delz2
*
tk1
/
r2
;
if
(
eflag
)
eangle
+=
bb_k
[
type
]
*
dr1
*
dr2
;
// force & energy for bond-angle term
aa1
=
s
*
dr1
*
ba_k1
[
type
];
aa2
=
s
*
dr2
*
ba_k2
[
type
];
aa11
=
aa1
*
c
/
rsq1
;
aa12
=
-
aa1
/
(
r1
*
r2
);
aa21
=
aa2
*
c
/
rsq1
;
aa22
=
-
aa2
/
(
r1
*
r2
);
vx11
=
(
aa11
*
delx1
)
+
(
aa12
*
delx2
);
vx12
=
(
aa21
*
delx1
)
+
(
aa22
*
delx2
);
vy11
=
(
aa11
*
dely1
)
+
(
aa12
*
dely2
);
vy12
=
(
aa21
*
dely1
)
+
(
aa22
*
dely2
);
vz11
=
(
aa11
*
delz1
)
+
(
aa12
*
delz2
);
vz12
=
(
aa21
*
delz1
)
+
(
aa22
*
delz2
);
aa11
=
aa1
*
c
/
rsq2
;
aa21
=
aa2
*
c
/
rsq2
;
vx21
=
(
aa11
*
delx2
)
+
(
aa12
*
delx1
);
vx22
=
(
aa21
*
delx2
)
+
(
aa22
*
delx1
);
vy21
=
(
aa11
*
dely2
)
+
(
aa12
*
dely1
);
vy22
=
(
aa21
*
dely2
)
+
(
aa22
*
dely1
);
vz21
=
(
aa11
*
delz2
)
+
(
aa12
*
delz1
);
vz22
=
(
aa21
*
delz2
)
+
(
aa22
*
delz1
);
b1
=
ba_k1
[
type
]
*
dtheta
/
r1
;
b2
=
ba_k2
[
type
]
*
dtheta
/
r2
;
f1
[
0
]
-=
vx11
+
b1
*
delx1
+
vx12
;
f1
[
1
]
-=
vy11
+
b1
*
dely1
+
vy12
;
f1
[
2
]
-=
vz11
+
b1
*
delz1
+
vz12
;
f3
[
0
]
-=
vx21
+
b2
*
delx2
+
vx22
;
f3
[
1
]
-=
vy21
+
b2
*
dely2
+
vy22
;
f3
[
2
]
-=
vz21
+
b2
*
delz2
+
vz22
;
if
(
eflag
)
eangle
+=
ba_k1
[
type
]
*
dr1
*
dtheta
+
ba_k2
[
type
]
*
dr2
*
dtheta
;
// apply force to each of 3 atoms
if
(
newton_bond
||
i1
<
nlocal
)
{
f
[
i1
][
0
]
+=
f1
[
0
];
f
[
i1
][
1
]
+=
f1
[
1
];
f
[
i1
][
2
]
+=
f1
[
2
];
}
if
(
newton_bond
||
i2
<
nlocal
)
{
f
[
i2
][
0
]
-=
f1
[
0
]
+
f3
[
0
];
f
[
i2
][
1
]
-=
f1
[
1
]
+
f3
[
1
];
f
[
i2
][
2
]
-=
f1
[
2
]
+
f3
[
2
];
}
if
(
newton_bond
||
i3
<
nlocal
)
{
f
[
i3
][
0
]
+=
f3
[
0
];
f
[
i3
][
1
]
+=
f3
[
1
];
f
[
i3
][
2
]
+=
f3
[
2
];
}
if
(
evflag
)
ev_tally
(
i1
,
i2
,
i3
,
nlocal
,
newton_bond
,
eangle
,
f1
,
f3
,
delx1
,
dely1
,
delz1
,
delx2
,
dely2
,
delz2
);
}
}
/* ---------------------------------------------------------------------- */
void
AngleClass2
::
allocate
()
{
allocated
=
1
;
int
n
=
atom
->
nangletypes
;
theta0
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"angle:theta0"
);
k2
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"angle:k2"
);
k3
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"angle:k3"
);
k4
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"angle:k4"
);
bb_k
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"angle:bb_k"
);
bb_r1
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"angle:bb_r1"
);
bb_r2
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"angle:bb_r2"
);
ba_k1
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"angle:ba_k1"
);
ba_k2
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"angle:ba_k2"
);
ba_r1
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"angle:ba_r1"
);
ba_r2
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"angle:ba_r2"
);
setflag
=
(
int
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
int
),
"angle:setflag"
);
setflag_a
=
(
int
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
int
),
"angle:setflag_a"
);
setflag_bb
=
(
int
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
int
),
"angle:setflag_bb"
);
setflag_ba
=
(
int
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
int
),
"angle:setflag_ba"
);
for
(
int
i
=
1
;
i
<=
n
;
i
++
)
setflag
[
i
]
=
setflag_a
[
i
]
=
setflag_bb
[
i
]
=
setflag_ba
[
i
]
=
0
;
}
/* ----------------------------------------------------------------------
set coeffs for one or more types
which = 0 -> Angle coeffs
which = 1 -> BondBond coeffs
which = 2 -> BondAngle coeffs
------------------------------------------------------------------------- */
void
AngleClass2
::
coeff
(
int
which
,
int
narg
,
char
**
arg
)
{
if
(
which
<
0
||
which
>
2
)
error
->
all
(
"Invalid coeffs for this angle style"
);
if
(
!
allocated
)
allocate
();
int
ilo
,
ihi
;
force
->
bounds
(
arg
[
0
],
atom
->
nangletypes
,
ilo
,
ihi
);
int
count
=
0
;
if
(
which
==
0
)
{
if
(
narg
!=
5
)
error
->
all
(
"Incorrect args for angle coefficients"
);
double
theta0_one
=
force
->
numeric
(
arg
[
1
]);
double
k2_one
=
force
->
numeric
(
arg
[
2
]);
double
k3_one
=
force
->
numeric
(
arg
[
3
]);
double
k4_one
=
force
->
numeric
(
arg
[
4
]);
// convert theta0 from degrees to radians
for
(
int
i
=
ilo
;
i
<=
ihi
;
i
++
)
{
theta0
[
i
]
=
theta0_one
/
180.0
*
PI
;
k2
[
i
]
=
k2_one
;
k3
[
i
]
=
k3_one
;
k4
[
i
]
=
k4_one
;
setflag_a
[
i
]
=
1
;
count
++
;
}
}
if
(
which
==
1
)
{
if
(
narg
!=
4
)
error
->
all
(
"Incorrect args for angle coefficients"
);
double
bb_k_one
=
force
->
numeric
(
arg
[
1
]);
double
bb_r1_one
=
force
->
numeric
(
arg
[
2
]);
double
bb_r2_one
=
force
->
numeric
(
arg
[
3
]);
for
(
int
i
=
ilo
;
i
<=
ihi
;
i
++
)
{
bb_k
[
i
]
=
bb_k_one
;
bb_r1
[
i
]
=
bb_r1_one
;
bb_r2
[
i
]
=
bb_r2_one
;
setflag_bb
[
i
]
=
1
;
count
++
;
}
}
if
(
which
==
2
)
{
if
(
narg
!=
5
)
error
->
all
(
"Incorrect args for angle coefficients"
);
double
ba_k1_one
=
force
->
numeric
(
arg
[
1
]);
double
ba_k2_one
=
force
->
numeric
(
arg
[
2
]);
double
ba_r1_one
=
force
->
numeric
(
arg
[
3
]);
double
ba_r2_one
=
force
->
numeric
(
arg
[
4
]);
for
(
int
i
=
ilo
;
i
<=
ihi
;
i
++
)
{
ba_k1
[
i
]
=
ba_k1_one
;
ba_k2
[
i
]
=
ba_k2_one
;
ba_r1
[
i
]
=
ba_r1_one
;
ba_r2
[
i
]
=
ba_r2_one
;
setflag_ba
[
i
]
=
1
;
count
++
;
}
}
if
(
count
==
0
)
error
->
all
(
"Incorrect args for angle coefficients"
);
for
(
int
i
=
ilo
;
i
<=
ihi
;
i
++
)
if
(
setflag_a
[
i
]
==
1
&&
setflag_bb
[
i
]
==
1
&&
setflag_ba
[
i
]
==
1
)
setflag
[
i
]
=
1
;
}
/* ---------------------------------------------------------------------- */
double
AngleClass2
::
equilibrium_angle
(
int
i
)
{
return
theta0
[
i
];
}
/* ----------------------------------------------------------------------
proc 0 writes out coeffs to restart file
------------------------------------------------------------------------- */
void
AngleClass2
::
write_restart
(
FILE
*
fp
)
{
fwrite
(
&
theta0
[
1
],
sizeof
(
double
),
atom
->
nangletypes
,
fp
);
fwrite
(
&
k2
[
1
],
sizeof
(
double
),
atom
->
nangletypes
,
fp
);
fwrite
(
&
k3
[
1
],
sizeof
(
double
),
atom
->
nangletypes
,
fp
);
fwrite
(
&
k4
[
1
],
sizeof
(
double
),
atom
->
nangletypes
,
fp
);
fwrite
(
&
bb_k
[
1
],
sizeof
(
double
),
atom
->
nangletypes
,
fp
);
fwrite
(
&
bb_r1
[
1
],
sizeof
(
double
),
atom
->
nangletypes
,
fp
);
fwrite
(
&
bb_r2
[
1
],
sizeof
(
double
),
atom
->
nangletypes
,
fp
);
fwrite
(
&
ba_k1
[
1
],
sizeof
(
double
),
atom
->
nangletypes
,
fp
);
fwrite
(
&
ba_k2
[
1
],
sizeof
(
double
),
atom
->
nangletypes
,
fp
);
fwrite
(
&
ba_r1
[
1
],
sizeof
(
double
),
atom
->
nangletypes
,
fp
);
fwrite
(
&
ba_r2
[
1
],
sizeof
(
double
),
atom
->
nangletypes
,
fp
);
}
/* ----------------------------------------------------------------------
proc 0 reads coeffs from restart file, bcasts them
------------------------------------------------------------------------- */
void
AngleClass2
::
read_restart
(
FILE
*
fp
)
{
allocate
();
if
(
comm
->
me
==
0
)
{
fread
(
&
theta0
[
1
],
sizeof
(
double
),
atom
->
nangletypes
,
fp
);
fread
(
&
k2
[
1
],
sizeof
(
double
),
atom
->
nangletypes
,
fp
);
fread
(
&
k3
[
1
],
sizeof
(
double
),
atom
->
nangletypes
,
fp
);
fread
(
&
k4
[
1
],
sizeof
(
double
),
atom
->
nangletypes
,
fp
);
fread
(
&
bb_k
[
1
],
sizeof
(
double
),
atom
->
nangletypes
,
fp
);
fread
(
&
bb_r1
[
1
],
sizeof
(
double
),
atom
->
nangletypes
,
fp
);
fread
(
&
bb_r2
[
1
],
sizeof
(
double
),
atom
->
nangletypes
,
fp
);
fread
(
&
ba_k1
[
1
],
sizeof
(
double
),
atom
->
nangletypes
,
fp
);
fread
(
&
ba_k2
[
1
],
sizeof
(
double
),
atom
->
nangletypes
,
fp
);
fread
(
&
ba_r1
[
1
],
sizeof
(
double
),
atom
->
nangletypes
,
fp
);
fread
(
&
ba_r2
[
1
],
sizeof
(
double
),
atom
->
nangletypes
,
fp
);
}
MPI_Bcast
(
&
theta0
[
1
],
atom
->
nangletypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
k2
[
1
],
atom
->
nangletypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
k3
[
1
],
atom
->
nangletypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
k4
[
1
],
atom
->
nangletypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
bb_k
[
1
],
atom
->
nangletypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
bb_r1
[
1
],
atom
->
nangletypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
bb_r2
[
1
],
atom
->
nangletypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
ba_k1
[
1
],
atom
->
nangletypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
ba_k2
[
1
],
atom
->
nangletypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
ba_r1
[
1
],
atom
->
nangletypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
ba_r2
[
1
],
atom
->
nangletypes
,
MPI_DOUBLE
,
0
,
world
);
for
(
int
i
=
1
;
i
<=
atom
->
nangletypes
;
i
++
)
setflag
[
i
]
=
1
;
}
/* ---------------------------------------------------------------------- */
double
AngleClass2
::
single
(
int
type
,
int
i1
,
int
i2
,
int
i3
)
{
double
**
x
=
atom
->
x
;
double
delx1
=
x
[
i1
][
0
]
-
x
[
i2
][
0
];
double
dely1
=
x
[
i1
][
1
]
-
x
[
i2
][
1
];
double
delz1
=
x
[
i1
][
2
]
-
x
[
i2
][
2
];
domain
->
minimum_image
(
delx1
,
dely1
,
delz1
);
double
r1
=
sqrt
(
delx1
*
delx1
+
dely1
*
dely1
+
delz1
*
delz1
);
double
delx2
=
x
[
i3
][
0
]
-
x
[
i2
][
0
];
double
dely2
=
x
[
i3
][
1
]
-
x
[
i2
][
1
];
double
delz2
=
x
[
i3
][
2
]
-
x
[
i2
][
2
];
domain
->
minimum_image
(
delx2
,
dely2
,
delz2
);
double
r2
=
sqrt
(
delx2
*
delx2
+
dely2
*
dely2
+
delz2
*
delz2
);
double
c
=
delx1
*
delx2
+
dely1
*
dely2
+
delz1
*
delz2
;
c
/=
r1
*
r2
;
if
(
c
>
1.0
)
c
=
1.0
;
if
(
c
<
-
1.0
)
c
=
-
1.0
;
double
s
=
sqrt
(
1.0
-
c
*
c
);
if
(
s
<
SMALL
)
s
=
SMALL
;
s
=
1.0
/
s
;
double
dtheta
=
acos
(
c
)
-
theta0
[
type
];
double
dtheta2
=
dtheta
*
dtheta
;
double
dtheta3
=
dtheta2
*
dtheta
;
double
dtheta4
=
dtheta3
*
dtheta
;
double
energy
=
k2
[
type
]
*
dtheta2
+
k3
[
type
]
*
dtheta3
+
k4
[
type
]
*
dtheta4
;
double
dr1
=
r1
-
bb_r1
[
type
];
double
dr2
=
r2
-
bb_r2
[
type
];
energy
+=
bb_k
[
type
]
*
dr1
*
dr2
;
energy
+=
ba_k1
[
type
]
*
dr1
*
dtheta
+
ba_k2
[
type
]
*
dr2
*
dtheta
;
return
energy
;
}
Event Timeline
Log In to Comment