Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90548447
pair_coul_long.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Nov 2, 16:06
Size
16 KB
Mime Type
text/x-c
Expires
Mon, Nov 4, 16:06 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22071955
Attached To
rLAMMPS lammps
pair_coul_long.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Paul Crozier (SNL)
------------------------------------------------------------------------- */
#include "math.h"
#include "stdio.h"
#include "stdlib.h"
#include "string.h"
#include "pair_coul_long.h"
#include "atom.h"
#include "comm.h"
#include "force.h"
#include "kspace.h"
#include "neighbor.h"
#include "neigh_list.h"
#include "update.h"
#include "integrate.h"
#include "respa.h"
#include "memory.h"
#include "error.h"
using
namespace
LAMMPS_NS
;
#define EWALD_F 1.12837917
#define EWALD_P 0.3275911
#define A1 0.254829592
#define A2 -0.284496736
#define A3 1.421413741
#define A4 -1.453152027
#define A5 1.061405429
/* ---------------------------------------------------------------------- */
PairCoulLong
::
PairCoulLong
(
LAMMPS
*
lmp
)
:
Pair
(
lmp
)
{
ftable
=
NULL
;
}
/* ---------------------------------------------------------------------- */
PairCoulLong
::~
PairCoulLong
()
{
if
(
allocated
)
{
memory
->
destroy
(
setflag
);
memory
->
destroy
(
cutsq
);
memory
->
destroy
(
scale
);
}
if
(
ftable
)
free_tables
();
}
/* ---------------------------------------------------------------------- */
void
PairCoulLong
::
compute
(
int
eflag
,
int
vflag
)
{
int
i
,
j
,
ii
,
jj
,
inum
,
jnum
,
itable
,
itype
,
jtype
;
double
qtmp
,
xtmp
,
ytmp
,
ztmp
,
delx
,
dely
,
delz
,
ecoul
,
fpair
;
double
fraction
,
table
;
double
r
,
r2inv
,
forcecoul
,
factor_coul
;
double
grij
,
expm2
,
prefactor
,
t
,
erfc
;
int
*
ilist
,
*
jlist
,
*
numneigh
,
**
firstneigh
;
double
rsq
;
ecoul
=
0.0
;
if
(
eflag
||
vflag
)
ev_setup
(
eflag
,
vflag
);
else
evflag
=
vflag_fdotr
=
0
;
double
**
x
=
atom
->
x
;
double
**
f
=
atom
->
f
;
double
*
q
=
atom
->
q
;
int
*
type
=
atom
->
type
;
int
nlocal
=
atom
->
nlocal
;
double
*
special_coul
=
force
->
special_coul
;
int
newton_pair
=
force
->
newton_pair
;
double
qqrd2e
=
force
->
qqrd2e
;
inum
=
list
->
inum
;
ilist
=
list
->
ilist
;
numneigh
=
list
->
numneigh
;
firstneigh
=
list
->
firstneigh
;
// loop over neighbors of my atoms
for
(
ii
=
0
;
ii
<
inum
;
ii
++
)
{
i
=
ilist
[
ii
];
qtmp
=
q
[
i
];
xtmp
=
x
[
i
][
0
];
ytmp
=
x
[
i
][
1
];
ztmp
=
x
[
i
][
2
];
itype
=
type
[
i
];
jlist
=
firstneigh
[
i
];
jnum
=
numneigh
[
i
];
for
(
jj
=
0
;
jj
<
jnum
;
jj
++
)
{
j
=
jlist
[
jj
];
factor_coul
=
special_coul
[
sbmask
(
j
)];
j
&=
NEIGHMASK
;
delx
=
xtmp
-
x
[
j
][
0
];
dely
=
ytmp
-
x
[
j
][
1
];
delz
=
ztmp
-
x
[
j
][
2
];
rsq
=
delx
*
delx
+
dely
*
dely
+
delz
*
delz
;
jtype
=
type
[
j
];
if
(
rsq
<
cut_coulsq
)
{
r2inv
=
1.0
/
rsq
;
if
(
!
ncoultablebits
||
rsq
<=
tabinnersq
)
{
r
=
sqrt
(
rsq
);
grij
=
g_ewald
*
r
;
expm2
=
exp
(
-
grij
*
grij
);
t
=
1.0
/
(
1.0
+
EWALD_P
*
grij
);
erfc
=
t
*
(
A1
+
t
*
(
A2
+
t
*
(
A3
+
t
*
(
A4
+
t
*
A5
))))
*
expm2
;
prefactor
=
qqrd2e
*
scale
[
itype
][
jtype
]
*
qtmp
*
q
[
j
]
/
r
;
forcecoul
=
prefactor
*
(
erfc
+
EWALD_F
*
grij
*
expm2
);
if
(
factor_coul
<
1.0
)
forcecoul
-=
(
1.0
-
factor_coul
)
*
prefactor
;
}
else
{
union_int_float_t
rsq_lookup
;
rsq_lookup
.
f
=
rsq
;
itable
=
rsq_lookup
.
i
&
ncoulmask
;
itable
>>=
ncoulshiftbits
;
fraction
=
(
rsq_lookup
.
f
-
rtable
[
itable
])
*
drtable
[
itable
];
table
=
ftable
[
itable
]
+
fraction
*
dftable
[
itable
];
forcecoul
=
scale
[
itype
][
jtype
]
*
qtmp
*
q
[
j
]
*
table
;
if
(
factor_coul
<
1.0
)
{
table
=
ctable
[
itable
]
+
fraction
*
dctable
[
itable
];
prefactor
=
scale
[
itype
][
jtype
]
*
qtmp
*
q
[
j
]
*
table
;
forcecoul
-=
(
1.0
-
factor_coul
)
*
prefactor
;
}
}
fpair
=
forcecoul
*
r2inv
;
f
[
i
][
0
]
+=
delx
*
fpair
;
f
[
i
][
1
]
+=
dely
*
fpair
;
f
[
i
][
2
]
+=
delz
*
fpair
;
if
(
newton_pair
||
j
<
nlocal
)
{
f
[
j
][
0
]
-=
delx
*
fpair
;
f
[
j
][
1
]
-=
dely
*
fpair
;
f
[
j
][
2
]
-=
delz
*
fpair
;
}
if
(
eflag
)
{
if
(
!
ncoultablebits
||
rsq
<=
tabinnersq
)
ecoul
=
prefactor
*
erfc
;
else
{
table
=
etable
[
itable
]
+
fraction
*
detable
[
itable
];
ecoul
=
scale
[
itype
][
jtype
]
*
qtmp
*
q
[
j
]
*
table
;
}
if
(
factor_coul
<
1.0
)
ecoul
-=
(
1.0
-
factor_coul
)
*
prefactor
;
}
if
(
evflag
)
ev_tally
(
i
,
j
,
nlocal
,
newton_pair
,
0.0
,
ecoul
,
fpair
,
delx
,
dely
,
delz
);
}
}
}
if
(
vflag_fdotr
)
virial_fdotr_compute
();
}
/* ----------------------------------------------------------------------
allocate all arrays
------------------------------------------------------------------------- */
void
PairCoulLong
::
allocate
()
{
allocated
=
1
;
int
n
=
atom
->
ntypes
;
memory
->
create
(
setflag
,
n
+
1
,
n
+
1
,
"pair:setflag"
);
for
(
int
i
=
1
;
i
<=
n
;
i
++
)
for
(
int
j
=
i
;
j
<=
n
;
j
++
)
setflag
[
i
][
j
]
=
0
;
memory
->
create
(
cutsq
,
n
+
1
,
n
+
1
,
"pair:cutsq"
);
memory
->
create
(
scale
,
n
+
1
,
n
+
1
,
"pair:scale"
);
}
/* ----------------------------------------------------------------------
global settings
------------------------------------------------------------------------- */
void
PairCoulLong
::
settings
(
int
narg
,
char
**
arg
)
{
if
(
narg
!=
1
)
error
->
all
(
FLERR
,
"Illegal pair_style command"
);
cut_coul
=
force
->
numeric
(
arg
[
0
]);
}
/* ----------------------------------------------------------------------
set coeffs for one or more type pairs
------------------------------------------------------------------------- */
void
PairCoulLong
::
coeff
(
int
narg
,
char
**
arg
)
{
if
(
narg
!=
2
)
error
->
all
(
FLERR
,
"Incorrect args for pair coefficients"
);
if
(
!
allocated
)
allocate
();
int
ilo
,
ihi
,
jlo
,
jhi
;
force
->
bounds
(
arg
[
0
],
atom
->
ntypes
,
ilo
,
ihi
);
force
->
bounds
(
arg
[
1
],
atom
->
ntypes
,
jlo
,
jhi
);
int
count
=
0
;
for
(
int
i
=
ilo
;
i
<=
ihi
;
i
++
)
{
for
(
int
j
=
MAX
(
jlo
,
i
);
j
<=
jhi
;
j
++
)
{
scale
[
i
][
j
]
=
1.0
;
setflag
[
i
][
j
]
=
1
;
count
++
;
}
}
if
(
count
==
0
)
error
->
all
(
FLERR
,
"Incorrect args for pair coefficients"
);
}
/* ----------------------------------------------------------------------
init specific to this pair style
------------------------------------------------------------------------- */
void
PairCoulLong
::
init_style
()
{
if
(
!
atom
->
q_flag
)
error
->
all
(
FLERR
,
"Pair style lj/cut/coul/long requires atom attribute q"
);
neighbor
->
request
(
this
);
cut_coulsq
=
cut_coul
*
cut_coul
;
// set & error check interior rRESPA cutoffs
if
(
strstr
(
update
->
integrate_style
,
"respa"
)
&&
((
Respa
*
)
update
->
integrate
)
->
level_inner
>=
0
)
{
cut_respa
=
((
Respa
*
)
update
->
integrate
)
->
cutoff
;
if
(
cut_coul
<
cut_respa
[
3
])
error
->
all
(
FLERR
,
"Pair cutoff < Respa interior cutoff"
);
}
else
cut_respa
=
NULL
;
// insure use of KSpace long-range solver, set g_ewald
if
(
force
->
kspace
==
NULL
)
error
->
all
(
FLERR
,
"Pair style is incompatible with KSpace style"
);
g_ewald
=
force
->
kspace
->
g_ewald
;
// setup force tables
if
(
ncoultablebits
)
init_tables
();
}
/* ----------------------------------------------------------------------
init for one type pair i,j and corresponding j,i
------------------------------------------------------------------------- */
double
PairCoulLong
::
init_one
(
int
i
,
int
j
)
{
scale
[
j
][
i
]
=
scale
[
i
][
j
];
return
cut_coul
;
}
/* ----------------------------------------------------------------------
setup force tables used in compute routines
------------------------------------------------------------------------- */
void
PairCoulLong
::
init_tables
()
{
int
masklo
,
maskhi
;
double
r
,
grij
,
expm2
,
derfc
,
rsw
;
double
qqrd2e
=
force
->
qqrd2e
;
tabinnersq
=
tabinner
*
tabinner
;
init_bitmap
(
tabinner
,
cut_coul
,
ncoultablebits
,
masklo
,
maskhi
,
ncoulmask
,
ncoulshiftbits
);
int
ntable
=
1
;
for
(
int
i
=
0
;
i
<
ncoultablebits
;
i
++
)
ntable
*=
2
;
// linear lookup tables of length N = 2^ncoultablebits
// stored value = value at lower edge of bin
// d values = delta from lower edge to upper edge of bin
if
(
ftable
)
free_tables
();
memory
->
create
(
rtable
,
ntable
,
"pair:rtable"
);
memory
->
create
(
ftable
,
ntable
,
"pair:ftable"
);
memory
->
create
(
ctable
,
ntable
,
"pair:ctable"
);
memory
->
create
(
etable
,
ntable
,
"pair:etable"
);
memory
->
create
(
drtable
,
ntable
,
"pair:drtable"
);
memory
->
create
(
dftable
,
ntable
,
"pair:dftable"
);
memory
->
create
(
dctable
,
ntable
,
"pair:dctable"
);
memory
->
create
(
detable
,
ntable
,
"pair:detable"
);
if
(
cut_respa
==
NULL
)
{
vtable
=
ptable
=
dvtable
=
dptable
=
NULL
;
}
else
{
memory
->
create
(
vtable
,
ntable
,
"pair:vtable"
);
memory
->
create
(
ptable
,
ntable
,
"pair:ptable"
);
memory
->
create
(
dvtable
,
ntable
,
"pair:dvtable"
);
memory
->
create
(
dptable
,
ntable
,
"pair:dptable"
);
}
union_int_float_t
rsq_lookup
;
union_int_float_t
minrsq_lookup
;
int
itablemin
;
minrsq_lookup
.
i
=
0
<<
ncoulshiftbits
;
minrsq_lookup
.
i
|=
maskhi
;
for
(
int
i
=
0
;
i
<
ntable
;
i
++
)
{
rsq_lookup
.
i
=
i
<<
ncoulshiftbits
;
rsq_lookup
.
i
|=
masklo
;
if
(
rsq_lookup
.
f
<
tabinnersq
)
{
rsq_lookup
.
i
=
i
<<
ncoulshiftbits
;
rsq_lookup
.
i
|=
maskhi
;
}
r
=
sqrtf
(
rsq_lookup
.
f
);
grij
=
g_ewald
*
r
;
expm2
=
exp
(
-
grij
*
grij
);
derfc
=
erfc
(
grij
);
if
(
cut_respa
==
NULL
)
{
rtable
[
i
]
=
rsq_lookup
.
f
;
ftable
[
i
]
=
qqrd2e
/
r
*
(
derfc
+
EWALD_F
*
grij
*
expm2
);
ctable
[
i
]
=
qqrd2e
/
r
;
etable
[
i
]
=
qqrd2e
/
r
*
derfc
;
}
else
{
rtable
[
i
]
=
rsq_lookup
.
f
;
ftable
[
i
]
=
qqrd2e
/
r
*
(
derfc
+
EWALD_F
*
grij
*
expm2
-
1.0
);
ctable
[
i
]
=
0.0
;
etable
[
i
]
=
qqrd2e
/
r
*
derfc
;
ptable
[
i
]
=
qqrd2e
/
r
;
vtable
[
i
]
=
qqrd2e
/
r
*
(
derfc
+
EWALD_F
*
grij
*
expm2
);
if
(
rsq_lookup
.
f
>
cut_respa
[
2
]
*
cut_respa
[
2
])
{
if
(
rsq_lookup
.
f
<
cut_respa
[
3
]
*
cut_respa
[
3
])
{
rsw
=
(
r
-
cut_respa
[
2
])
/
(
cut_respa
[
3
]
-
cut_respa
[
2
]);
ftable
[
i
]
+=
qqrd2e
/
r
*
rsw
*
rsw
*
(
3.0
-
2.0
*
rsw
);
ctable
[
i
]
=
qqrd2e
/
r
*
rsw
*
rsw
*
(
3.0
-
2.0
*
rsw
);
}
else
{
ftable
[
i
]
=
qqrd2e
/
r
*
(
derfc
+
EWALD_F
*
grij
*
expm2
);
ctable
[
i
]
=
qqrd2e
/
r
;
}
}
}
minrsq_lookup
.
f
=
MIN
(
minrsq_lookup
.
f
,
rsq_lookup
.
f
);
}
tabinnersq
=
minrsq_lookup
.
f
;
int
ntablem1
=
ntable
-
1
;
for
(
int
i
=
0
;
i
<
ntablem1
;
i
++
)
{
drtable
[
i
]
=
1.0
/
(
rtable
[
i
+
1
]
-
rtable
[
i
]);
dftable
[
i
]
=
ftable
[
i
+
1
]
-
ftable
[
i
];
dctable
[
i
]
=
ctable
[
i
+
1
]
-
ctable
[
i
];
detable
[
i
]
=
etable
[
i
+
1
]
-
etable
[
i
];
}
if
(
cut_respa
)
{
for
(
int
i
=
0
;
i
<
ntablem1
;
i
++
)
{
dvtable
[
i
]
=
vtable
[
i
+
1
]
-
vtable
[
i
];
dptable
[
i
]
=
ptable
[
i
+
1
]
-
ptable
[
i
];
}
}
// get the delta values for the last table entries
// tables are connected periodically between 0 and ntablem1
drtable
[
ntablem1
]
=
1.0
/
(
rtable
[
0
]
-
rtable
[
ntablem1
]);
dftable
[
ntablem1
]
=
ftable
[
0
]
-
ftable
[
ntablem1
];
dctable
[
ntablem1
]
=
ctable
[
0
]
-
ctable
[
ntablem1
];
detable
[
ntablem1
]
=
etable
[
0
]
-
etable
[
ntablem1
];
if
(
cut_respa
)
{
dvtable
[
ntablem1
]
=
vtable
[
0
]
-
vtable
[
ntablem1
];
dptable
[
ntablem1
]
=
ptable
[
0
]
-
ptable
[
ntablem1
];
}
// get the correct delta values at itablemax
// smallest r is in bin itablemin
// largest r is in bin itablemax, which is itablemin-1,
// or ntablem1 if itablemin=0
// deltas at itablemax only needed if corresponding rsq < cut*cut
// if so, compute deltas between rsq and cut*cut
double
f_tmp
,
c_tmp
,
e_tmp
,
p_tmp
,
v_tmp
;
itablemin
=
minrsq_lookup
.
i
&
ncoulmask
;
itablemin
>>=
ncoulshiftbits
;
int
itablemax
=
itablemin
-
1
;
if
(
itablemin
==
0
)
itablemax
=
ntablem1
;
rsq_lookup
.
i
=
itablemax
<<
ncoulshiftbits
;
rsq_lookup
.
i
|=
maskhi
;
if
(
rsq_lookup
.
f
<
cut_coulsq
)
{
rsq_lookup
.
f
=
cut_coulsq
;
r
=
sqrtf
(
rsq_lookup
.
f
);
grij
=
g_ewald
*
r
;
expm2
=
exp
(
-
grij
*
grij
);
derfc
=
erfc
(
grij
);
if
(
cut_respa
==
NULL
)
{
f_tmp
=
qqrd2e
/
r
*
(
derfc
+
EWALD_F
*
grij
*
expm2
);
c_tmp
=
qqrd2e
/
r
;
e_tmp
=
qqrd2e
/
r
*
derfc
;
}
else
{
f_tmp
=
qqrd2e
/
r
*
(
derfc
+
EWALD_F
*
grij
*
expm2
-
1.0
);
c_tmp
=
0.0
;
e_tmp
=
qqrd2e
/
r
*
derfc
;
p_tmp
=
qqrd2e
/
r
;
v_tmp
=
qqrd2e
/
r
*
(
derfc
+
EWALD_F
*
grij
*
expm2
);
if
(
rsq_lookup
.
f
>
cut_respa
[
2
]
*
cut_respa
[
2
])
{
if
(
rsq_lookup
.
f
<
cut_respa
[
3
]
*
cut_respa
[
3
])
{
rsw
=
(
r
-
cut_respa
[
2
])
/
(
cut_respa
[
3
]
-
cut_respa
[
2
]);
f_tmp
+=
qqrd2e
/
r
*
rsw
*
rsw
*
(
3.0
-
2.0
*
rsw
);
c_tmp
=
qqrd2e
/
r
*
rsw
*
rsw
*
(
3.0
-
2.0
*
rsw
);
}
else
{
f_tmp
=
qqrd2e
/
r
*
(
derfc
+
EWALD_F
*
grij
*
expm2
);
c_tmp
=
qqrd2e
/
r
;
}
}
}
drtable
[
itablemax
]
=
1.0
/
(
rsq_lookup
.
f
-
rtable
[
itablemax
]);
dftable
[
itablemax
]
=
f_tmp
-
ftable
[
itablemax
];
dctable
[
itablemax
]
=
c_tmp
-
ctable
[
itablemax
];
detable
[
itablemax
]
=
e_tmp
-
etable
[
itablemax
];
if
(
cut_respa
)
{
dvtable
[
itablemax
]
=
v_tmp
-
vtable
[
itablemax
];
dptable
[
itablemax
]
=
p_tmp
-
ptable
[
itablemax
];
}
}
}
/* ----------------------------------------------------------------------
proc 0 writes to restart file
------------------------------------------------------------------------- */
void
PairCoulLong
::
write_restart
(
FILE
*
fp
)
{
write_restart_settings
(
fp
);
}
/* ----------------------------------------------------------------------
proc 0 reads from restart file, bcasts
------------------------------------------------------------------------- */
void
PairCoulLong
::
read_restart
(
FILE
*
fp
)
{
read_restart_settings
(
fp
);
allocate
();
}
/* ----------------------------------------------------------------------
proc 0 writes to restart file
------------------------------------------------------------------------- */
void
PairCoulLong
::
write_restart_settings
(
FILE
*
fp
)
{
fwrite
(
&
cut_coul
,
sizeof
(
double
),
1
,
fp
);
fwrite
(
&
offset_flag
,
sizeof
(
int
),
1
,
fp
);
fwrite
(
&
mix_flag
,
sizeof
(
int
),
1
,
fp
);
}
/* ----------------------------------------------------------------------
proc 0 reads from restart file, bcasts
------------------------------------------------------------------------- */
void
PairCoulLong
::
read_restart_settings
(
FILE
*
fp
)
{
if
(
comm
->
me
==
0
)
{
fread
(
&
cut_coul
,
sizeof
(
double
),
1
,
fp
);
fread
(
&
offset_flag
,
sizeof
(
int
),
1
,
fp
);
fread
(
&
mix_flag
,
sizeof
(
int
),
1
,
fp
);
}
MPI_Bcast
(
&
cut_coul
,
1
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
offset_flag
,
1
,
MPI_INT
,
0
,
world
);
MPI_Bcast
(
&
mix_flag
,
1
,
MPI_INT
,
0
,
world
);
}
/* ----------------------------------------------------------------------
free memory for tables used in pair computations
------------------------------------------------------------------------- */
void
PairCoulLong
::
free_tables
()
{
memory
->
destroy
(
rtable
);
memory
->
destroy
(
drtable
);
memory
->
destroy
(
ftable
);
memory
->
destroy
(
dftable
);
memory
->
destroy
(
ctable
);
memory
->
destroy
(
dctable
);
memory
->
destroy
(
etable
);
memory
->
destroy
(
detable
);
memory
->
destroy
(
vtable
);
memory
->
destroy
(
dvtable
);
memory
->
destroy
(
ptable
);
memory
->
destroy
(
dptable
);
}
/* ---------------------------------------------------------------------- */
double
PairCoulLong
::
single
(
int
i
,
int
j
,
int
itype
,
int
jtype
,
double
rsq
,
double
factor_coul
,
double
factor_lj
,
double
&
fforce
)
{
double
r2inv
,
r
,
grij
,
expm2
,
t
,
erfc
,
prefactor
;
double
fraction
,
table
,
forcecoul
,
phicoul
;
int
itable
;
r2inv
=
1.0
/
rsq
;
if
(
!
ncoultablebits
||
rsq
<=
tabinnersq
)
{
r
=
sqrt
(
rsq
);
grij
=
g_ewald
*
r
;
expm2
=
exp
(
-
grij
*
grij
);
t
=
1.0
/
(
1.0
+
EWALD_P
*
grij
);
erfc
=
t
*
(
A1
+
t
*
(
A2
+
t
*
(
A3
+
t
*
(
A4
+
t
*
A5
))))
*
expm2
;
prefactor
=
force
->
qqrd2e
*
atom
->
q
[
i
]
*
atom
->
q
[
j
]
/
r
;
forcecoul
=
prefactor
*
(
erfc
+
EWALD_F
*
grij
*
expm2
);
if
(
factor_coul
<
1.0
)
forcecoul
-=
(
1.0
-
factor_coul
)
*
prefactor
;
}
else
{
union_int_float_t
rsq_lookup
;
rsq_lookup
.
f
=
rsq
;
itable
=
rsq_lookup
.
i
&
ncoulmask
;
itable
>>=
ncoulshiftbits
;
fraction
=
(
rsq_lookup
.
f
-
rtable
[
itable
])
*
drtable
[
itable
];
table
=
ftable
[
itable
]
+
fraction
*
dftable
[
itable
];
forcecoul
=
atom
->
q
[
i
]
*
atom
->
q
[
j
]
*
table
;
if
(
factor_coul
<
1.0
)
{
table
=
ctable
[
itable
]
+
fraction
*
dctable
[
itable
];
prefactor
=
atom
->
q
[
i
]
*
atom
->
q
[
j
]
*
table
;
forcecoul
-=
(
1.0
-
factor_coul
)
*
prefactor
;
}
}
fforce
=
forcecoul
*
r2inv
;
if
(
!
ncoultablebits
||
rsq
<=
tabinnersq
)
phicoul
=
prefactor
*
erfc
;
else
{
table
=
etable
[
itable
]
+
fraction
*
detable
[
itable
];
phicoul
=
atom
->
q
[
i
]
*
atom
->
q
[
j
]
*
table
;
}
if
(
factor_coul
<
1.0
)
phicoul
-=
(
1.0
-
factor_coul
)
*
prefactor
;
return
phicoul
;
}
/* ---------------------------------------------------------------------- */
void
*
PairCoulLong
::
extract
(
char
*
str
,
int
&
dim
)
{
if
(
strcmp
(
str
,
"cut_coul"
)
==
0
)
{
dim
=
0
;
return
(
void
*
)
&
cut_coul
;
}
if
(
strcmp
(
str
,
"scale"
)
==
0
)
{
dim
=
2
;
return
(
void
*
)
scale
;
}
return
NULL
;
}
Event Timeline
Log In to Comment