Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91002130
angle_cosine.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Nov 6, 20:02
Size
5 KB
Mime Type
text/x-c
Expires
Fri, Nov 8, 20:02 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22170208
Attached To
rLAMMPS lammps
angle_cosine.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "math.h"
#include "stdlib.h"
#include "angle_cosine.h"
#include "atom.h"
#include "neighbor.h"
#include "domain.h"
#include "comm.h"
#include "force.h"
#include "math_const.h"
#include "memory.h"
#include "error.h"
using
namespace
LAMMPS_NS
;
using
namespace
MathConst
;
#define SMALL 0.001
/* ---------------------------------------------------------------------- */
AngleCosine
::
AngleCosine
(
LAMMPS
*
lmp
)
:
Angle
(
lmp
)
{}
/* ---------------------------------------------------------------------- */
AngleCosine
::~
AngleCosine
()
{
if
(
allocated
)
{
memory
->
destroy
(
setflag
);
memory
->
destroy
(
k
);
}
}
/* ---------------------------------------------------------------------- */
void
AngleCosine
::
compute
(
int
eflag
,
int
vflag
)
{
int
i1
,
i2
,
i3
,
n
,
type
;
double
delx1
,
dely1
,
delz1
,
delx2
,
dely2
,
delz2
;
double
eangle
,
f1
[
3
],
f3
[
3
];
double
rsq1
,
rsq2
,
r1
,
r2
,
c
,
a
,
a11
,
a12
,
a22
;
eangle
=
0.0
;
if
(
eflag
||
vflag
)
ev_setup
(
eflag
,
vflag
);
else
evflag
=
0
;
double
**
x
=
atom
->
x
;
double
**
f
=
atom
->
f
;
int
**
anglelist
=
neighbor
->
anglelist
;
int
nanglelist
=
neighbor
->
nanglelist
;
int
nlocal
=
atom
->
nlocal
;
int
newton_bond
=
force
->
newton_bond
;
for
(
n
=
0
;
n
<
nanglelist
;
n
++
)
{
i1
=
anglelist
[
n
][
0
];
i2
=
anglelist
[
n
][
1
];
i3
=
anglelist
[
n
][
2
];
type
=
anglelist
[
n
][
3
];
// 1st bond
delx1
=
x
[
i1
][
0
]
-
x
[
i2
][
0
];
dely1
=
x
[
i1
][
1
]
-
x
[
i2
][
1
];
delz1
=
x
[
i1
][
2
]
-
x
[
i2
][
2
];
domain
->
minimum_image
(
delx1
,
dely1
,
delz1
);
rsq1
=
delx1
*
delx1
+
dely1
*
dely1
+
delz1
*
delz1
;
r1
=
sqrt
(
rsq1
);
// 2nd bond
delx2
=
x
[
i3
][
0
]
-
x
[
i2
][
0
];
dely2
=
x
[
i3
][
1
]
-
x
[
i2
][
1
];
delz2
=
x
[
i3
][
2
]
-
x
[
i2
][
2
];
domain
->
minimum_image
(
delx2
,
dely2
,
delz2
);
rsq2
=
delx2
*
delx2
+
dely2
*
dely2
+
delz2
*
delz2
;
r2
=
sqrt
(
rsq2
);
// c = cosine of angle
c
=
delx1
*
delx2
+
dely1
*
dely2
+
delz1
*
delz2
;
c
/=
r1
*
r2
;
if
(
c
>
1.0
)
c
=
1.0
;
if
(
c
<
-
1.0
)
c
=
-
1.0
;
// force & energy
if
(
eflag
)
eangle
=
k
[
type
]
*
(
1.0
+
c
);
a
=
k
[
type
];
a11
=
a
*
c
/
rsq1
;
a12
=
-
a
/
(
r1
*
r2
);
a22
=
a
*
c
/
rsq2
;
f1
[
0
]
=
a11
*
delx1
+
a12
*
delx2
;
f1
[
1
]
=
a11
*
dely1
+
a12
*
dely2
;
f1
[
2
]
=
a11
*
delz1
+
a12
*
delz2
;
f3
[
0
]
=
a22
*
delx2
+
a12
*
delx1
;
f3
[
1
]
=
a22
*
dely2
+
a12
*
dely1
;
f3
[
2
]
=
a22
*
delz2
+
a12
*
delz1
;
// apply force to each of 3 atoms
if
(
newton_bond
||
i1
<
nlocal
)
{
f
[
i1
][
0
]
+=
f1
[
0
];
f
[
i1
][
1
]
+=
f1
[
1
];
f
[
i1
][
2
]
+=
f1
[
2
];
}
if
(
newton_bond
||
i2
<
nlocal
)
{
f
[
i2
][
0
]
-=
f1
[
0
]
+
f3
[
0
];
f
[
i2
][
1
]
-=
f1
[
1
]
+
f3
[
1
];
f
[
i2
][
2
]
-=
f1
[
2
]
+
f3
[
2
];
}
if
(
newton_bond
||
i3
<
nlocal
)
{
f
[
i3
][
0
]
+=
f3
[
0
];
f
[
i3
][
1
]
+=
f3
[
1
];
f
[
i3
][
2
]
+=
f3
[
2
];
}
if
(
evflag
)
ev_tally
(
i1
,
i2
,
i3
,
nlocal
,
newton_bond
,
eangle
,
f1
,
f3
,
delx1
,
dely1
,
delz1
,
delx2
,
dely2
,
delz2
);
}
}
/* ---------------------------------------------------------------------- */
void
AngleCosine
::
allocate
()
{
allocated
=
1
;
int
n
=
atom
->
nangletypes
;
memory
->
create
(
k
,
n
+
1
,
"angle:k"
);
memory
->
create
(
setflag
,
n
+
1
,
"angle:setflag"
);
for
(
int
i
=
1
;
i
<=
n
;
i
++
)
setflag
[
i
]
=
0
;
}
/* ----------------------------------------------------------------------
set coeffs for one type
------------------------------------------------------------------------- */
void
AngleCosine
::
coeff
(
int
narg
,
char
**
arg
)
{
if
(
narg
!=
2
)
error
->
all
(
FLERR
,
"Incorrect args for angle coefficients"
);
if
(
!
allocated
)
allocate
();
int
ilo
,
ihi
;
force
->
bounds
(
arg
[
0
],
atom
->
nangletypes
,
ilo
,
ihi
);
double
k_one
=
force
->
numeric
(
arg
[
1
]);
int
count
=
0
;
for
(
int
i
=
ilo
;
i
<=
ihi
;
i
++
)
{
k
[
i
]
=
k_one
;
setflag
[
i
]
=
1
;
count
++
;
}
if
(
count
==
0
)
error
->
all
(
FLERR
,
"Incorrect args for angle coefficients"
);
}
/* ---------------------------------------------------------------------- */
double
AngleCosine
::
equilibrium_angle
(
int
i
)
{
return
MY_PI
;
}
/* ----------------------------------------------------------------------
proc 0 writes out coeffs to restart file
------------------------------------------------------------------------- */
void
AngleCosine
::
write_restart
(
FILE
*
fp
)
{
fwrite
(
&
k
[
1
],
sizeof
(
double
),
atom
->
nangletypes
,
fp
);
}
/* ----------------------------------------------------------------------
proc 0 reads coeffs from restart file, bcasts them
------------------------------------------------------------------------- */
void
AngleCosine
::
read_restart
(
FILE
*
fp
)
{
allocate
();
if
(
comm
->
me
==
0
)
fread
(
&
k
[
1
],
sizeof
(
double
),
atom
->
nangletypes
,
fp
);
MPI_Bcast
(
&
k
[
1
],
atom
->
nangletypes
,
MPI_DOUBLE
,
0
,
world
);
for
(
int
i
=
1
;
i
<=
atom
->
nangletypes
;
i
++
)
setflag
[
i
]
=
1
;
}
/* ---------------------------------------------------------------------- */
double
AngleCosine
::
single
(
int
type
,
int
i1
,
int
i2
,
int
i3
)
{
double
**
x
=
atom
->
x
;
double
delx1
=
x
[
i1
][
0
]
-
x
[
i2
][
0
];
double
dely1
=
x
[
i1
][
1
]
-
x
[
i2
][
1
];
double
delz1
=
x
[
i1
][
2
]
-
x
[
i2
][
2
];
domain
->
minimum_image
(
delx1
,
dely1
,
delz1
);
double
r1
=
sqrt
(
delx1
*
delx1
+
dely1
*
dely1
+
delz1
*
delz1
);
double
delx2
=
x
[
i3
][
0
]
-
x
[
i2
][
0
];
double
dely2
=
x
[
i3
][
1
]
-
x
[
i2
][
1
];
double
delz2
=
x
[
i3
][
2
]
-
x
[
i2
][
2
];
domain
->
minimum_image
(
delx2
,
dely2
,
delz2
);
double
r2
=
sqrt
(
delx2
*
delx2
+
dely2
*
dely2
+
delz2
*
delz2
);
double
c
=
delx1
*
delx2
+
dely1
*
dely2
+
delz1
*
delz2
;
c
/=
r1
*
r2
;
if
(
c
>
1.0
)
c
=
1.0
;
if
(
c
<
-
1.0
)
c
=
-
1.0
;
return
k
[
type
]
*
(
1.0
+
c
);
}
Event Timeline
Log In to Comment