Page MenuHomec4science

ewald_n.cpp
No OneTemporary

File Metadata

Created
Thu, Jul 11, 19:55

ewald_n.cpp

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Pieter J. in 't Veld (SNL)
------------------------------------------------------------------------- */
#include "mpi.h"
#include "string.h"
#include "stdio.h"
#include "stdlib.h"
#include "math.h"
#include "ewald_n.h"
#include "math_vector.h"
#include "atom.h"
#include "comm.h"
#include "force.h"
#include "pair.h"
#include "domain.h"
#include "memory.h"
#include "error.h"
using namespace LAMMPS_NS;
#define KSPACE_ILLEGAL "Illegal kspace_style ewald/n command"
#define KSPACE_ORDER "Unsupported order in kspace_style ewald/n for"
#define KSPACE_MIX "Unsupported mixing rule in kspace_style ewald/n for"
enum{GEOMETRIC,ARITHMETIC,SIXTHPOWER}; // same as in pair.cpp
//#define DEBUG
/* ---------------------------------------------------------------------- */
EwaldN::EwaldN(LAMMPS *lmp, int narg, char **arg) : KSpace(lmp, narg, arg)
{
if (narg!=1) error->all(FLERR,KSPACE_ILLEGAL);
precision = fabs(atof(arg[0]));
memset(function, 0, EWALD_NORDER*sizeof(int));
kenergy = kvirial = NULL;
cek_local = cek_global = NULL;
ekr_local = NULL;
hvec = NULL;
kvec = NULL;
B = NULL;
first_output = 0;
}
EwaldN::~EwaldN()
{
deallocate();
delete [] ekr_local;
delete [] B;
}
/* --------------------------------------------------------------------- */
void EwaldN::init()
{
nkvec = nkvec_max = nevec = nevec_max = 0;
nfunctions = nsums = sums = 0;
nbox = -1;
bytes = 0.0;
if (!comm->me) { // output message
if (screen) fprintf(screen,"EwaldN initialization ...\n");
if (logfile) fprintf(logfile,"EwaldN initialization ...\n");
}
if (domain->dimension == 2) // check for errors
error->all(FLERR,"Cannot use EwaldN with 2d simulation");
if (slabflag == 0 && domain->nonperiodic > 0)
error->all(FLERR,"Cannot use nonperiodic boundaries with EwaldN");
if (slabflag == 1) {
if (domain->xperiodic != 1 || domain->yperiodic != 1 ||
domain->boundary[2][0] != 1 || domain->boundary[2][1] != 1)
error->all(FLERR,"Incorrect boundaries with slab EwaldN");
}
scale = 1.0;
//mumurd2e = force->mumurd2e;
//dielectric = force->dielectric;
mumurd2e = dielectric = 1.0;
int tmp;
Pair *pair = force->pair;
int *ptr = pair ? (int *) pair->extract("ewald_order",tmp) : NULL;
double *cutoff = pair ? (double *) pair->extract("cut_coul",tmp) : NULL;
if (!(ptr||cutoff))
error->all(FLERR,"KSpace style is incompatible with Pair style");
int ewald_order = ptr ? *((int *) ptr) : 1<<1;
int ewald_mix = ptr ? *((int *) pair->extract("ewald_mix",tmp)) : GEOMETRIC;
memset(function, 0, EWALD_NFUNCS*sizeof(int));
for (int i=0; i<=EWALD_NORDER; ++i) // transcribe order
if (ewald_order&(1<<i)) { // from pair_style
int n[] = EWALD_NSUMS, k;
char str[128];
switch (i) {
case 1:
k = 0; break;
case 3:
k = 3; break;
case 6:
if (ewald_mix==GEOMETRIC) { k = 1; break; }
else if (ewald_mix==ARITHMETIC) { k = 2; break; }
sprintf(str, "%s pair_style %s", KSPACE_MIX, force->pair_style);
error->all(FLERR,str);
default:
sprintf(str, "%s pair_style %s", KSPACE_ORDER, force->pair_style);
error->all(FLERR,str);
}
nfunctions += function[k] = 1;
nsums += n[k];
}
g_ewald = (1.35 - 0.15*log(precision))/ *cutoff; // determine resolution
g2_max = -4.0*g_ewald*g_ewald*log(precision);
if (!comm->me) { // output results
if (screen) fprintf(screen, " G vector = %g\n", g_ewald);
if (logfile) fprintf(logfile, " G vector = %g\n", g_ewald);
}
}
/* ----------------------------------------------------------------------
adjust EwaldN coeffs, called initially and whenever volume has changed
------------------------------------------------------------------------- */
void EwaldN::setup()
{
volume = shape_det(domain->h)*slab_volfactor; // cell volume
memcpy(unit, domain->h_inv, sizeof(shape)); // wave vector units
shape_scalar_mult(unit, 2.0*M_PI);
unit[2] /= slab_volfactor;
//int nbox_old = nbox, nkvec_old = nkvec;
if (precision>=1) nbox = 0;
else {
vector n = {1.0, 1.0, 1.0}; // based on cutoff
vec_scalar_mult(n, g_ewald*sqrt(-log(precision))/M_PI);
shape_vec_dot(n, n, domain->h);
n[2] *= slab_volfactor;
nbox = (int) n[0];
if (nbox<(int) n[1]) nbox = (int) n[1];
if (nbox<(int) n[2]) nbox = (int) n[2];
}
reallocate();
coefficients(); // compute coeffs
init_coeffs();
init_coeff_sums();
init_self();
if (!(first_output||comm->me)) { // output on first
first_output = 1;
if (screen) fprintf(screen,
" vectors: nbox = %d, nkvec = %d\n", nbox, nkvec);
if (logfile) fprintf(logfile,
" vectors: nbox = %d, nkvec = %d\n", nbox, nkvec);
}
}
void EwaldN::reallocate() // allocate memory
{
int ix, iy, iz;
int nkvec_max = nkvec;
vector h;
nkvec = 0; // determine size(kvec)
int kflag[(nbox+1)*(2*nbox+1)*(2*nbox+1)], *flag = kflag;
for (ix=0; ix<=nbox; ++ix)
for (iy=-nbox; iy<=nbox; ++iy)
for (iz=-nbox; iz<=nbox; ++iz)
if (!(ix||iy||iz)) *(flag++) = 0;
else if ((!ix)&&(iy<0)) *(flag++) = 0;
else if ((!(ix||iy))&&(iz<0)) *(flag++) = 0; // use symmetry
else {
h[0] = unit[0]*ix;
h[1] = unit[5]*ix+unit[1]*iy;
h[2] = unit[4]*ix+unit[3]*iy+unit[2]*iz;
if ((*(flag++) = h[0]*h[0]+h[1]*h[1]+h[2]*h[2]<=g2_max)) ++nkvec;
}
if (nkvec>nkvec_max) {
deallocate(); // free memory
hvec = new hvector[nkvec]; // hvec
bytes += (nkvec-nkvec_max)*sizeof(hvector);
kvec = new kvector[nkvec]; // kvec
bytes += (nkvec-nkvec_max)*sizeof(kvector);
kenergy = new double[nkvec*nfunctions]; // kenergy
bytes += (nkvec-nkvec_max)*nfunctions*sizeof(double);
kvirial = new double[6*nkvec*nfunctions]; // kvirial
bytes += 6*(nkvec-nkvec_max)*nfunctions*sizeof(double);
cek_local = new complex[nkvec*nsums]; // cek_local
bytes += (nkvec-nkvec_max)*nsums*sizeof(complex);
cek_global = new complex[nkvec*nsums]; // cek_global
bytes += (nkvec-nkvec_max)*nsums*sizeof(complex);
nkvec_max = nkvec;
}
flag = kflag; // create index and
kvector *k = kvec; // wave vectors
hvector *hi = hvec;
for (ix=0; ix<=nbox; ++ix)
for (iy=-nbox; iy<=nbox; ++iy)
for (iz=-nbox; iz<=nbox; ++iz)
if (*(flag++)) {
hi->x = unit[0]*ix;
hi->y = unit[5]*ix+unit[1]*iy;
(hi++)->z = unit[4]*ix+unit[3]*iy+unit[2]*iz;
k->x = ix+nbox; k->y = iy+nbox; (k++)->z = iz+nbox; }
}
void EwaldN::reallocate_atoms()
{
if ((nevec = atom->nmax*(2*nbox+1))<=nevec_max) return;
delete [] ekr_local;
ekr_local = new cvector[nevec];
bytes += (nevec-nevec_max)*sizeof(cvector);
nevec_max = nevec;
}
void EwaldN::deallocate() // free memory
{
delete [] hvec; hvec = NULL;
delete [] kvec; kvec = NULL;
delete [] kenergy; kenergy = NULL;
delete [] kvirial; kvirial = NULL;
delete [] cek_local; cek_local = NULL;
delete [] cek_global; cek_global = NULL;
}
void EwaldN::coefficients() // set up pre-factors
{
vector h;
hvector *hi = hvec, *nh;
double eta2 = 0.25/(g_ewald*g_ewald);
double b1, b2, expb2, h1, h2, c1, c2;
double *ke = kenergy, *kv = kvirial;
int func0 = function[0], func12 = function[1]||function[2],
func3 = function[3];
for (nh = (hi = hvec)+nkvec; hi<nh; ++hi) { // wave vectors
memcpy(h, hi, sizeof(vector));
expb2 = exp(-(b2 = (h2 = vec_dot(h, h))*eta2));
if (func0) { // qi*qj/r coeffs
*(ke++) = c1 = expb2/h2;
*(kv++) = c1-(c2 = 2.0*c1*(1.0+b2)/h2)*h[0]*h[0];
*(kv++) = c1-c2*h[1]*h[1]; // lammps convention
*(kv++) = c1-c2*h[2]*h[2]; // instead of voigt
*(kv++) = -c2*h[1]*h[0];
*(kv++) = -c2*h[2]*h[0];
*(kv++) = -c2*h[2]*h[1];
}
if (func12) { // -Bij/r^6 coeffs
b1 = sqrt(b2); // minus sign folded
h1 = sqrt(h2); // into constants
*(ke++) = c1 = -h1*h2*((c2=sqrt(M_PI)*erfc(b1))+(0.5/b2-1.0)*expb2/b1);
*(kv++) = c1-(c2 = 3.0*h1*(c2-expb2/b1))*h[0]*h[0];
*(kv++) = c1-c2*h[1]*h[1]; // lammps convention
*(kv++) = c1-c2*h[2]*h[2]; // instead of voigt
*(kv++) = -c2*h[1]*h[0];
*(kv++) = -c2*h[2]*h[0];
*(kv++) = -c2*h[2]*h[1];
}
if (func3) { // dipole coeffs
*(ke++) = c1 = expb2/h2;
*(kv++) = c1-(c2 = 2.0*c1*(1.0+b2)/h2)*h[0]*h[0];
*(kv++) = c1-c2*h[1]*h[1]; // lammps convention
*(kv++) = c1-c2*h[2]*h[2]; // instead of voigt
*(kv++) = -c2*h[1]*h[0];
*(kv++) = -c2*h[2]*h[0];
*(kv++) = -c2*h[2]*h[1];
}
}
}
void EwaldN::init_coeffs() // local pair coeffs
{
int tmp;
int n = atom->ntypes;
if (function[1]) { // geometric 1/r^6
double **b = (double **) force->pair->extract("B",tmp);
delete [] B;
B = new double[n+1];
bytes += (n+1)*sizeof(double);
for (int i=0; i<=n; ++i) B[i] = sqrt(fabs(b[i][i]));
}
if (function[2]) { // arithmetic 1/r^6
double **epsilon = (double **) force->pair->extract("epsilon",tmp);
double **sigma = (double **) force->pair->extract("sigma",tmp);
if (!(epsilon&&sigma))
error->all(FLERR,"epsilon or sigma reference not set by pair style in ewald/n");
double eps_i, sigma_i, sigma_n, *bi = B = new double[7*n+7];
double c[7] = {
1.0, sqrt(6.0), sqrt(15.0), sqrt(20.0), sqrt(15.0), sqrt(6.0), 1.0};
for (int i=0; i<=n; ++i) {
eps_i = sqrt(epsilon[i][i]);
sigma_i = sigma[i][i];
sigma_n = 1.0;
for (int j=0; j<7; ++j) {
*(bi++) = sigma_n*eps_i*c[j]; sigma_n *= sigma_i;
}
}
}
}
void EwaldN::init_coeff_sums() // sums based on atoms
{
if (sums) return; // calculated only once
sums = 1;
Sum sum_local[EWALD_MAX_NSUMS];
memset(sum_local, 0, EWALD_MAX_NSUMS*sizeof(Sum));
if (function[0]) { // 1/r
double *q = atom->q, *qn = q+atom->nlocal;
for (double *i=q; i<qn; ++i) {
sum_local[0].x += i[0]; sum_local[0].x2 += i[0]*i[0]; }
}
if (function[1]) { // geometric 1/r^6
int *type = atom->type, *ntype = type+atom->nlocal;
for (int *i=type; i<ntype; ++i) {
sum_local[1].x += B[i[0]]; sum_local[1].x2 += B[i[0]]*B[i[0]]; }
}
if (function[2]) { // aritmetic 1/r^6
double *bi;
int *type = atom->type, *ntype = type+atom->nlocal;
for (int *i=type; i<ntype; ++i) {
bi = B+7*i[0];
sum_local[2].x2 += bi[0]*bi[6];
for (int k=2; k<9; ++k) sum_local[k].x += *(bi++);
}
}
if (function[3]) { // dipole
double **mu = atom->mu;
int nlocal = atom->nlocal;
for (int i = 0; i < nlocal; i++)
sum_local[9].x2 += mu[i][3]*mu[i][3];
}
MPI_Allreduce(sum_local, sum, 2*EWALD_MAX_NSUMS, MPI_DOUBLE, MPI_SUM, world);
}
void EwaldN::init_self()
{
double g1 = g_ewald, g2 = g1*g1, g3 = g1*g2;
memset(energy_self, 0, EWALD_NFUNCS*sizeof(double)); // self energy
memset(virial_self, 0, EWALD_NFUNCS*sizeof(double));
const double qscale = force->qqrd2e * scale;
if (function[0]) { // 1/r
virial_self[0] = -0.5*M_PI*qscale/(g2*volume)*sum[0].x*sum[0].x;
energy_self[0] = sum[0].x2*qscale*g1/sqrt(M_PI)-virial_self[0];
}
if (function[1]) { // geometric 1/r^6
virial_self[1] = M_PI*sqrt(M_PI)*g3/(6.0*volume)*sum[1].x*sum[1].x;
energy_self[1] = -sum[1].x2*g3*g3/12.0+virial_self[1];
}
if (function[2]) { // arithmetic 1/r^6
virial_self[2] = M_PI*sqrt(M_PI)*g3/(48.0*volume)*(sum[2].x*sum[8].x+
sum[3].x*sum[7].x+sum[4].x*sum[6].x+0.5*sum[5].x*sum[5].x);
energy_self[2] = -sum[2].x2*g3*g3/3.0+virial_self[2];
}
if (function[3]) { // dipole
virial_self[3] = 0; // in surface
energy_self[3] = sum[9].x2*mumurd2e*2.0*g3/3.0/sqrt(M_PI)-virial_self[3];
}
}
/* ----------------------------------------------------------------------
compute the EwaldN long-range force, energy, virial
------------------------------------------------------------------------- */
void EwaldN::compute(int eflag, int vflag)
{
if (!nbox) return;
reallocate_atoms();
compute_ek();
compute_force();
compute_surface();
compute_energy(eflag);
compute_virial(vflag);
}
void EwaldN::compute_ek()
{
cvector *ekr = ekr_local;
int lbytes = (2*nbox+1)*sizeof(cvector);
hvector *h;
kvector *k, *nk = kvec+nkvec;
cvector z1, z[2*nbox+1], *zx, *zy, *zz, *zn = z+2*nbox;
complex *cek, zxyz, zxy, cx;
vector mui;
double *x = atom->x[0], *xn = x+3*atom->nlocal, *q = atom->q, qi, bi, ci[7];
double *mu = atom->mu ? atom->mu[0] : NULL;
int i, kx, ky, n = nkvec*nsums, *type = atom->type, tri = domain->triclinic;
int func[EWALD_NFUNCS];
memcpy(func, function, EWALD_NFUNCS*sizeof(int));
memset(cek_local, 0, n*sizeof(complex)); // reset sums
while (x<xn) {
zx = (zy = (zz = z+nbox)+1)-2;
C_SET(zz->x, 1, 0); C_SET(zz->y, 1, 0); C_SET(zz->z, 1, 0); // z[0]
if (tri) { // triclinic z[1]
C_ANGLE(z1.x, unit[0]*x[0]+unit[5]*x[1]+unit[4]*x[2]);
C_ANGLE(z1.y, unit[1]*x[1]+unit[3]*x[2]);
C_ANGLE(z1.z, x[2]*unit[2]); x += 3;
}
else { // orthogonal z[1]
C_ANGLE(z1.x, *(x++)*unit[0]);
C_ANGLE(z1.y, *(x++)*unit[1]);
C_ANGLE(z1.z, *(x++)*unit[2]);
}
for (; zz<zn; --zx, ++zy, ++zz) { // set up z[k]=e^(ik.r)
C_RMULT(zy->x, zz->x, z1.x); // 3D k-vector
C_RMULT(zy->y, zz->y, z1.y); C_CONJ(zx->y, zy->y);
C_RMULT(zy->z, zz->z, z1.z); C_CONJ(zx->z, zy->z);
}
kx = ky = -1;
cek = cek_local;
if (func[0]) qi = *(q++);
if (func[1]) bi = B[*type];
if (func[2]) memcpy(ci, B+7*type[0], 7*sizeof(double));
if (func[3]) {
memcpy(mui, mu, sizeof(vector)); mu += 3;
vec_scalar_mult(mui, mu[3]);
mu += 4;
h = hvec;
}
for (k=kvec; k<nk; ++k) { // compute rho(k)
if (ky!=k->y) { // based on order in
if (kx!=k->x) cx = z[kx = k->x].x; // reallocate
C_RMULT(zxy, z[ky = k->y].y, cx);
}
C_RMULT(zxyz, z[k->z].z, zxy);
if (func[0]) {
cek->re += zxyz.re*qi; (cek++)->im += zxyz.im*qi;
}
if (func[1]) {
cek->re += zxyz.re*bi; (cek++)->im += zxyz.im*bi;
}
if (func[2]) for (i=0; i<7; ++i) {
cek->re += zxyz.re*ci[i]; (cek++)->im += zxyz.im*ci[i];
}
if (func[3]) {
register double muk = mui[0]*h->x+mui[1]*h->y+mui[2]*h->z; ++h;
cek->re += zxyz.re*muk; (cek++)->im += zxyz.im*muk;
}
}
ekr = (cvector *) ((char *) memcpy(ekr, z, lbytes)+lbytes);
++type;
}
MPI_Allreduce(cek_local, cek_global, 2*n, MPI_DOUBLE, MPI_SUM, world);
}
void EwaldN::compute_force()
{
kvector *k;
hvector *h, *nh;
cvector *z = ekr_local;
vector sum[EWALD_MAX_NSUMS], mui;
complex *cek, zc, zx, zxy;
double *f = atom->f[0], *fn = f+3*atom->nlocal, *q = atom->q, *t = NULL;
double *mu = atom->mu ? atom->mu[0] : NULL;
const double qscale = force->qqrd2e * scale;
double *ke, c[EWALD_NFUNCS] = {
8.0*M_PI*qscale/volume, 2.0*M_PI*sqrt(M_PI)/(12.0*volume),
2.0*M_PI*sqrt(M_PI)/(192.0*volume), 8.0*M_PI*mumurd2e/volume};
double kt = 4.0*pow(g_ewald, 3.0)/3.0/sqrt(M_PI)/c[3];
int i, kx, ky, lbytes = (2*nbox+1)*sizeof(cvector), *type = atom->type;
int func[EWALD_NFUNCS];
if (atom->torque) t = atom->torque[0];
memcpy(func, function, EWALD_NFUNCS*sizeof(int));
memset(sum, 0, EWALD_MAX_NSUMS*sizeof(vector)); // fj = -dE/dr =
for (; f<fn; f+=3) { // -i*qj*fac*
k = kvec; // Sum[conj(d)-d]
kx = ky = -1; // d = k*conj(ekj)*ek
ke = kenergy;
cek = cek_global;
memset(sum, 0, EWALD_MAX_NSUMS*sizeof(vector));
if (func[3]) {
register double di = mu[3] * c[3];
mui[0] = di*(mu++)[0]; mui[1] = di*(mu++)[1]; mui[2] = di*(mu++)[2];
mu++;
}
for (nh = (h = hvec)+nkvec; h<nh; ++h, ++k) {
if (ky!=k->y) { // based on order in
if (kx!=k->x) zx = z[kx = k->x].x; // reallocate
C_RMULT(zxy, z[ky = k->y].y, zx);
}
C_CRMULT(zc, z[k->z].z, zxy);
if (func[0]) { // 1/r
register double im = *(ke++)*(zc.im*cek->re+cek->im*zc.re); ++cek;
sum[0][0] += h->x*im; sum[0][1] += h->y*im; sum[0][2] += h->z*im;
}
if (func[1]) { // geometric 1/r^6
register double im = *(ke++)*(zc.im*cek->re+cek->im*zc.re); ++cek;
sum[1][0] += h->x*im; sum[1][1] += h->y*im; sum[1][2] += h->z*im;
}
if (func[2]) { // arithmetic 1/r^6
register double im, c = *(ke++);
for (i=2; i<9; ++i) {
im = c*(zc.im*cek->re+cek->im*zc.re); ++cek;
sum[i][0] += h->x*im; sum[i][1] += h->y*im; sum[i][2] += h->z*im;
}
}
if (func[3]) { // dipole
register double im = *(ke++)*(zc.im*cek->re+
cek->im*zc.re)*(mui[0]*h->x+mui[1]*h->y+mui[2]*h->z); ++cek;
sum[9][0] += h->x*im; sum[9][1] += h->y*im; sum[9][2] += h->z*im;
}
}
if (func[0]) { // 1/r
register double qi = *(q++)*c[0];
f[0] -= sum[0][0]*qi; f[1] -= sum[0][1]*qi; f[2] -= sum[0][2]*qi;
}
if (func[1]) { // geometric 1/r^6
register double bi = B[*type]*c[1];
f[0] -= sum[1][0]*bi; f[1] -= sum[1][1]*bi; f[2] -= sum[1][2]*bi;
}
if (func[2]) { // arithmetic 1/r^6
register double *bi = B+7*type[0]+7;
for (i=2; i<9; ++i) {
register double c2 = (--bi)[0]*c[2];
f[0] -= sum[i][0]*c2; f[1] -= sum[i][1]*c2; f[2] -= sum[i][2]*c2;
}
}
if (func[3]) { // dipole
f[0] -= sum[9][0]; f[1] -= sum[9][1]; f[2] -= sum[9][2];
*(t++) -= mui[1]*sum[0][2]+mui[2]*sum[0][1]-mui[0]*kt; // torque
*(t++) -= mui[2]*sum[0][0]+mui[0]*sum[0][2]-mui[1]*kt;
*(t++) -= mui[0]*sum[0][1]+mui[1]*sum[0][0]-mui[2]*kt;
}
z = (cvector *) ((char *) z+lbytes);
++type;
}
}
void EwaldN::compute_surface()
{
if (!function[3]) return;
vector sum_local = VECTOR_NULL, sum_total;
double **mu = atom->mu;
int nlocal = atom->nlocal;
for (int i=0; i < nlocal; i++) {
register double di = mu[i][3];
sum_local[0] += di*mu[i][0];
sum_local[1] += di*mu[i][1];
sum_local[2] += di*mu[i][2];
}
MPI_Allreduce(sum_local, sum_total, 3, MPI_DOUBLE, MPI_SUM, world);
energy_self[3] += virial_self[3];
virial_self[3] =
mumurd2e*(2.0*M_PI*vec_dot(sum_total,sum_total)/(2.0*dielectric+1)/volume);
energy_self[3] -= virial_self[3];
}
void EwaldN::compute_energy(int eflag)
{
energy = 0.0;
if (!eflag) return;
complex *cek = cek_global;
double *ke = kenergy;
const double qscale = force->qqrd2e * scale;
double c[EWALD_NFUNCS] = {
4.0*M_PI*qscale/volume, 2.0*M_PI*sqrt(M_PI)/(24.0*volume),
2.0*M_PI*sqrt(M_PI)/(192.0*volume), 4.0*M_PI*mumurd2e/volume};
double sum[EWALD_NFUNCS];
int func[EWALD_NFUNCS];
memcpy(func, function, EWALD_NFUNCS*sizeof(int));
memset(sum, 0, EWALD_NFUNCS*sizeof(double)); // reset sums
for (int k=0; k<nkvec; ++k) { // sum over k vectors
if (func[0]) { // 1/r
sum[0] += *(ke++)*(cek->re*cek->re+cek->im*cek->im); ++cek; }
if (func[1]) { // geometric 1/r^6
sum[1] += *(ke++)*(cek->re*cek->re+cek->im*cek->im); ++cek; }
if (func[2]) { // arithmetic 1/r^6
register double r =
(cek[0].re*cek[6].re+cek[0].im*cek[6].im)+
(cek[1].re*cek[5].re+cek[1].im*cek[5].im)+
(cek[2].re*cek[4].re+cek[2].im*cek[4].im)+
0.5*(cek[3].re*cek[3].re+cek[3].im*cek[3].im); cek += 7;
sum[2] += *(ke++)*r;
}
if (func[3]) { // dipole
sum[3] += *(ke++)*(cek->re*cek->re+cek->im*cek->im); ++cek; }
}
for (int k=0; k<EWALD_NFUNCS; ++k) energy += c[k]*sum[k]-energy_self[k];
if (slabflag) compute_slabcorr(eflag);
}
#define swap(a, b) { register double t = a; a= b; b = t; }
void EwaldN::compute_virial(int vflag)
{
memset(virial, 0, sizeof(shape));
if (!vflag) return;
complex *cek = cek_global;
double *kv = kvirial;
const double qscale = force->qqrd2e * scale;
double c[EWALD_NFUNCS] = {
4.0*M_PI*qscale/volume, 2.0*M_PI*sqrt(M_PI)/(24.0*volume),
2.0*M_PI*sqrt(M_PI)/(192.0*volume), 4.0*M_PI*mumurd2e/volume};
shape sum[EWALD_NFUNCS];
int func[EWALD_NFUNCS];
memcpy(func, function, EWALD_NFUNCS*sizeof(int));
memset(sum, 0, EWALD_NFUNCS*sizeof(shape));
for (int k=0; k<nkvec; ++k) { // sum over k vectors
if (func[0]) { // 1/r
register double r = cek->re*cek->re+cek->im*cek->im; ++cek;
sum[0][0] += *(kv++)*r; sum[0][1] += *(kv++)*r; sum[0][2] += *(kv++)*r;
sum[0][3] += *(kv++)*r; sum[0][4] += *(kv++)*r; sum[0][5] += *(kv++)*r;
}
if (func[1]) { // geometric 1/r^6
register double r = cek->re*cek->re+cek->im*cek->im; ++cek;
sum[1][0] += *(kv++)*r; sum[1][1] += *(kv++)*r; sum[1][2] += *(kv++)*r;
sum[1][3] += *(kv++)*r; sum[1][4] += *(kv++)*r; sum[1][5] += *(kv++)*r;
}
if (func[2]) { // arithmetic 1/r^6
register double r =
(cek[0].re*cek[6].re+cek[0].im*cek[6].im)+
(cek[1].re*cek[5].re+cek[1].im*cek[5].im)+
(cek[2].re*cek[4].re+cek[2].im*cek[4].im)+
0.5*(cek[3].re*cek[3].re+cek[3].im*cek[3].im); cek += 7;
sum[2][0] += *(kv++)*r; sum[2][1] += *(kv++)*r; sum[2][2] += *(kv++)*r;
sum[2][3] += *(kv++)*r; sum[2][4] += *(kv++)*r; sum[2][5] += *(kv++)*r;
}
if (func[3]) {
register double r = cek->re*cek->re+cek->im*cek->im; ++cek;
sum[3][0] += *(kv++)*r; sum[3][1] += *(kv++)*r; sum[3][2] += *(kv++)*r;
sum[3][3] += *(kv++)*r; sum[3][4] += *(kv++)*r; sum[3][5] += *(kv++)*r;
}
}
for (int k=0; k<EWALD_NFUNCS; ++k)
if (func[k]) {
shape self = {virial_self[k], virial_self[k], virial_self[k], 0, 0, 0};
shape_scalar_mult(sum[k], c[k]);
shape_add(virial, sum[k]);
shape_subtr(virial, self);
}
}
/* ----------------------------------------------------------------------
Slab-geometry correction term to dampen inter-slab interactions between
periodically repeating slabs. Yields good approximation to 2-D EwaldN if
adequate empty space is left between repeating slabs (J. Chem. Phys.
111, 3155). Slabs defined here to be parallel to the xy plane.
------------------------------------------------------------------------- */
void EwaldN::compute_slabcorr(int eflag)
{
// compute local contribution to global dipole moment
double *q = atom->q;
double *x = atom->x[0]-1, *xn = x+3*atom->nlocal-1;
double dipole = 0.0, dipole_all;
while ((x+=3)<xn) dipole += *x * *(q++);
MPI_Allreduce(&dipole, &dipole_all, 1, MPI_DOUBLE, MPI_SUM, world);
const double qscale = force->qqrd2e * scale;
double ffact = -4.0*M_PI*qscale*dipole_all/volume;
double *f = atom->f[0]-1, *fn = f+3*atom->nlocal-3;
q = atom->q;
while ((f+=3)<fn) *f += ffact* *(q++);
if (eflag) // energy correction
energy += qscale*(2.0*M_PI*dipole_all*dipole_all/volume);
}

Event Timeline