Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91108261
manifold_thylakoid_shared.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Nov 7, 23:53
Size
6 KB
Mime Type
text/x-c
Expires
Sat, Nov 9, 23:53 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22081720
Attached To
rLAMMPS lammps
manifold_thylakoid_shared.cpp
View Options
#include "manifold_thylakoid_shared.h"
#include <math.h>
using namespace LAMMPS_NS;
using namespace user_manifold;
thyla_part::thyla_part( int type, double *args, double xlo, double ylo, double zlo,
double xhi, double yhi, double zhi )
: type(type), xlo(xlo), xhi(xhi),
ylo(ylo), yhi(yhi), zlo(zlo), zhi(zhi)
{
switch(type){
case THYLA_TYPE_PLANE: // a*(x-x0) + b*(y-y0) + c*(z-z0) = 0
params[0] = args[0]; // a
params[1] = args[1]; // b
params[2] = args[2]; // c
params[3] = args[3]; // x0
params[4] = args[4]; // y0
params[5] = args[5]; // z0
break;
case THYLA_TYPE_SPHERE: // (x-x0)^2 + (y-y0)^2 + (z-z0)^2 - R^2 = 0
params[0] = args[0]; // R
params[1] = args[1]; // x0
params[2] = args[2]; // y0
params[3] = args[3]; // z0
break;
case THYLA_TYPE_CYL: // a*(x-x0)^2 + b*(y-y0)^2 + c*(z-z0)^2 - R^2 = 0
params[0] = args[0]; // a
params[1] = args[1]; // b
params[2] = args[2]; // c
params[3] = args[3]; // x0
params[4] = args[4]; // y0
params[5] = args[5]; // z0
params[6] = args[6]; // R
if( (args[0] != 0.0) && (args[1] != 0.0) && (args[2] != 0.0) ){
err_flag = -1;
return;
}
// The others should be 1.
if( (args[0] != 1.0) && (args[0] != 0.0) &&
(args[1] != 1.0) && (args[1] != 0.0) &&
(args[2] != 1.0) && (args[2] != 0.0) ){
err_flag = -1;
}
break;
case THYLA_TYPE_CYL_TO_PLANE:
/*
* Funky bit that connects a cylinder to a plane.
* It is what you get by rotating the equation
* r(x) = R0 + R*( 1 - sqrt( 1 - ( ( X0 - x ) /R )^2 ) ) around the x-axis.
* I kid you not.
*
* The shape is symmetric so you have to set whether it is the "left" or
* "right" end by truncating it properly. It is designed to run from
* X0 to X0 + R if "right" or X0 - R to X0 if "left".
*
* As params it takes X0, R0, R, and a sign that determines whether it is
* "left" (args[3] < 0) or "right" (args[3] > 0).
*
* The args are: X0, R0, R, x0, y0, z0, sign.
*/
params[0] = args[0];
params[1] = args[1];
params[2] = args[2];
params[3] = args[3];
params[4] = args[4];
params[5] = args[5];
params[6] = args[6];
break;
default:
err_flag = -1;
}
x0 = (type == THYLA_TYPE_SPHERE) ? params[1] : params[3];
y0 = (type == THYLA_TYPE_SPHERE) ? params[2] : params[4];
z0 = (type == THYLA_TYPE_SPHERE) ? params[3] : params[5];
}
thyla_part::~thyla_part()
{}
double thyla_part::g(const double *x)
{
switch(type){
case THYLA_TYPE_PLANE:{ // a*(x-x0) + b*(y-y0) + c*(z-z0) = 0
double a = params[0];
double b = params[1];
double c = params[2];
double dx = x[0] - params[3];
double dy = x[1] - params[4];
double dz = x[2] - params[5];
return a*dx + b*dy + c*dz;
break;
}
case THYLA_TYPE_SPHERE:{ // (x-x0)^2 + (y-y0)^2 + (z-z0)^2 - R^2 = 0
double R2 = params[0]*params[0];
double dx = x[0] - params[1];
double dy = x[1] - params[2];
double dz = x[2] - params[3];
return dx*dx + dy*dy + dz*dz - R2;
break;
}
case THYLA_TYPE_CYL:{ // a*(x-x0)^2 + b*(y-y0)^2 + c*(z-z0)^2 - R^2 = 0
double a = params[0];
double b = params[1];
double c = params[2];
double X0 = params[3];
double Y0 = params[4];
double Z0 = params[5];
double R = params[6];
double dx = x[0] - X0;
double dy = x[1] - Y0;
double dz = x[2] - Z0;
return a*dx*dx + b*dy*dy + c*dz*dz - R*R;
break;
}
case THYLA_TYPE_CYL_TO_PLANE:{
double X0 = params[0];
double R0 = params[1];
double R = params[2];
// Determine the centre of the sphere.
double dx = (x[0] - X0);
double dyz = sqrt( x[1]*x[1] + x[2]*x[2] );
double rdyz = dyz - (R0 + R);
double norm = 1.0 / (2.0*R);
// Maybe sign is important here...
double g = norm*(dx*dx + rdyz*rdyz - R*R);
return g;
}
default:
err_flag = -1;
return 0; // Mostly to get rid of compiler werrors.
break;
}
}
void thyla_part::n( const double *x, double *n )
{
switch(type){
case THYLA_TYPE_PLANE:{ // a*(x-x0) + b*(y-y0) + c*(z-z0) = 0
double a = params[0];
double b = params[1];
double c = params[2];
n[0] = a;
n[1] = b;
n[2] = c;
break;
}
case THYLA_TYPE_SPHERE:{ // (x-x0)^2 + (y-y0)^2 + (z-z0)^2 - R^2 = 0
double dx = x[0] - params[1];
double dy = x[1] - params[2];
double dz = x[2] - params[3];
n[0] = 2*dx;
n[1] = 2*dy;
n[2] = 2*dz;
break;
}
case THYLA_TYPE_CYL:{ // a*(x-x0)^2 + b*(y-y0)^2 + c*(z-z0)^2 - R^2 = 0
double a = params[0];
double b = params[1];
double c = params[2];
double X0 = params[3];
double Y0 = params[4];
double Z0 = params[5];
double dx = x[0] - X0;
double dy = x[1] - Y0;
double dz = x[2] - Z0;
n[0] = 2*a*dx;
n[1] = 2*b*dy;
n[2] = 2*c*dz;
break;
}
case THYLA_TYPE_CYL_TO_PLANE:{
double X0 = params[0];
double R0 = params[1];
double R = params[2];
double s = (params[6] > 0.0) ? 1.0 : -1.0;
// Determine the centre of the sphere.
double dx = s*(x[0] - X0);
double ryz = sqrt( x[1]*x[1] + x[2]*x[2] );
// Maybe sign is important here...
// Normalize g and n so that the normal is continuous:
double norm = 1.0 / (2.0 * R);
n[0] = s*2*dx*norm;
double const_part = 1.0 - (R0 + R) / ryz;
n[1] = 2*x[1]*const_part*norm;
n[2] = 2*x[2]*const_part*norm;
break;
}
default:
err_flag = -1;
break;
}
}
void thyla_part_geom::mirror( unsigned int axis, thyla_part_geom *m,
const thyla_part_geom *o )
{
// Since dir is already the index of the array this is really simple:
m->lo[0] = o->lo[0];
m->lo[1] = o->lo[1];
m->lo[2] = o->lo[2];
m->pt[0] = o->pt[0];
m->pt[1] = o->pt[1];
m->pt[2] = o->pt[2];
m->hi[0] = o->hi[0];
m->hi[1] = o->hi[1];
m->hi[2] = o->hi[2];
m->lo[axis] = -o->hi[axis];
m->hi[axis] = -o->lo[axis];
m->pt[axis] = -o->pt[axis];
}
Event Timeline
Log In to Comment