Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90462997
reaxc_ffield.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Nov 1, 22:02
Size
21 KB
Mime Type
text/x-c
Expires
Sun, Nov 3, 22:02 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22057982
Attached To
rLAMMPS lammps
reaxc_ffield.cpp
View Options
/*----------------------------------------------------------------------
PuReMD - Purdue ReaxFF Molecular Dynamics Program
Copyright (2010) Purdue University
Hasan Metin Aktulga, hmaktulga@lbl.gov
Joseph Fogarty, jcfogart@mail.usf.edu
Sagar Pandit, pandit@usf.edu
Ananth Y Grama, ayg@cs.purdue.edu
Please cite the related publication:
H. M. Aktulga, J. C. Fogarty, S. A. Pandit, A. Y. Grama,
"Parallel Reactive Molecular Dynamics: Numerical Methods and
Algorithmic Techniques", Parallel Computing, in press.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details:
<http://www.gnu.org/licenses/>.
----------------------------------------------------------------------*/
#include "pair_reax_c.h"
#if defined(PURE_REAX)
#include "ffield.h"
#include "tool_box.h"
#elif defined(LAMMPS_REAX)
#include "reaxc_ffield.h"
#include "reaxc_tool_box.h"
#endif
char Read_Force_Field( char *ffield_file, reax_interaction *reax,
control_params *control )
{
FILE *fp;
char *s;
char **tmp;
char ****tor_flag;
int c, i, j, k, l, m, n, o, p, cnt;
real val;
MPI_Comm comm;
comm = MPI_COMM_WORLD;
/* open force field file */
if ( (fp = fopen( ffield_file, "r" ) ) == NULL ) {
fprintf( stderr, "error opening the force filed file! terminating...\n" );
MPI_Abort( comm, FILE_NOT_FOUND );
}
s = (char*) malloc(sizeof(char)*MAX_LINE);
tmp = (char**) malloc(sizeof(char*)*MAX_TOKENS);
for (i=0; i < MAX_TOKENS; i++)
tmp[i] = (char*) malloc(sizeof(char)*MAX_TOKEN_LEN);
/* reading first header comment */
fgets( s, MAX_LINE, fp );
/* line 2 is number of global parameters */
fgets( s, MAX_LINE, fp );
c = Tokenize( s, &tmp );
/* reading the number of global parameters */
n = atoi(tmp[0]);
if (n < 1) {
fprintf( stderr, "WARNING: number of globals in ffield file is 0!\n" );
fclose(fp);
return 1;
}
reax->gp.n_global = n;
reax->gp.l = (real*) malloc(sizeof(real)*n);
/* see reax_types.h for mapping between l[i] and the lambdas used in ff */
for (i=0; i < n; i++) {
fgets(s,MAX_LINE,fp);
c = Tokenize(s,&tmp);
val = (real) atof(tmp[0]);
reax->gp.l[i] = val;
}
control->bo_cut = 0.01 * reax->gp.l[29];
control->nonb_low = reax->gp.l[11];
control->nonb_cut = reax->gp.l[12];
/* next line is number of atom types and some comments */
fgets( s, MAX_LINE, fp );
c = Tokenize( s, &tmp );
reax->num_atom_types = atoi(tmp[0]);
/* 3 lines of comments */
fgets(s,MAX_LINE,fp);
fgets(s,MAX_LINE,fp);
fgets(s,MAX_LINE,fp);
/* Allocating structures in reax_interaction */
reax->sbp = (single_body_parameters*)
scalloc( reax->num_atom_types, sizeof(single_body_parameters), "sbp",
comm );
reax->tbp = (two_body_parameters**)
scalloc( reax->num_atom_types, sizeof(two_body_parameters*), "tbp", comm );
reax->thbp= (three_body_header***)
scalloc( reax->num_atom_types, sizeof(three_body_header**), "thbp", comm );
reax->hbp = (hbond_parameters***)
scalloc( reax->num_atom_types, sizeof(hbond_parameters**), "hbp", comm );
reax->fbp = (four_body_header****)
scalloc( reax->num_atom_types, sizeof(four_body_header***), "fbp", comm );
tor_flag = (char****)
scalloc( reax->num_atom_types, sizeof(char***), "tor_flag", comm );
for( i = 0; i < reax->num_atom_types; i++ ) {
reax->tbp[i] = (two_body_parameters*)
scalloc( reax->num_atom_types, sizeof(two_body_parameters), "tbp[i]",
comm );
reax->thbp[i]= (three_body_header**)
scalloc( reax->num_atom_types, sizeof(three_body_header*), "thbp[i]",
comm );
reax->hbp[i] = (hbond_parameters**)
scalloc( reax->num_atom_types, sizeof(hbond_parameters*), "hbp[i]",
comm );
reax->fbp[i] = (four_body_header***)
scalloc( reax->num_atom_types, sizeof(four_body_header**), "fbp[i]",
comm );
tor_flag[i] = (char***)
scalloc( reax->num_atom_types, sizeof(char**), "tor_flag[i]", comm );
for( j = 0; j < reax->num_atom_types; j++ ) {
reax->thbp[i][j]= (three_body_header*)
scalloc( reax->num_atom_types, sizeof(three_body_header), "thbp[i,j]",
comm );
reax->hbp[i][j] = (hbond_parameters*)
scalloc( reax->num_atom_types, sizeof(hbond_parameters), "hbp[i,j]",
comm );
reax->fbp[i][j] = (four_body_header**)
scalloc( reax->num_atom_types, sizeof(four_body_header*), "fbp[i,j]",
comm );
tor_flag[i][j] = (char**)
scalloc( reax->num_atom_types, sizeof(char*), "tor_flag[i,j]", comm );
for (k=0; k < reax->num_atom_types; k++) {
reax->fbp[i][j][k] = (four_body_header*)
scalloc( reax->num_atom_types, sizeof(four_body_header), "fbp[i,j,k]",
comm );
tor_flag[i][j][k] = (char*)
scalloc( reax->num_atom_types, sizeof(char), "tor_flag[i,j,k]",
comm );
}
}
}
// vdWaals type: 1: Shielded Morse, no inner-wall
// 2: inner wall, no shielding
// 3: inner wall+shielding
reax->gp.vdw_type = 0;
/* reading single atom parameters */
/* there are 4 lines of each single atom parameters in ff files. these
parameters later determine some of the pair and triplet parameters using
combination rules. */
for( i = 0; i < reax->num_atom_types; i++ ) {
/* line one */
fgets( s, MAX_LINE, fp );
c = Tokenize( s, &tmp );
for( j = 0; j < (int)(strlen(tmp[0])); ++j )
reax->sbp[i].name[j] = toupper( tmp[0][j] );
val = atof(tmp[1]); reax->sbp[i].r_s = val;
val = atof(tmp[2]); reax->sbp[i].valency = val;
val = atof(tmp[3]); reax->sbp[i].mass = val;
val = atof(tmp[4]); reax->sbp[i].r_vdw = val;
val = atof(tmp[5]); reax->sbp[i].epsilon = val;
val = atof(tmp[6]); reax->sbp[i].gamma = val;
val = atof(tmp[7]); reax->sbp[i].r_pi = val;
val = atof(tmp[8]); reax->sbp[i].valency_e = val;
reax->sbp[i].nlp_opt = 0.5 * (reax->sbp[i].valency_e-reax->sbp[i].valency);
/* line two */
fgets( s, MAX_LINE, fp );
c = Tokenize( s, &tmp );
val = atof(tmp[0]); reax->sbp[i].alpha = val;
val = atof(tmp[1]); reax->sbp[i].gamma_w = val;
val = atof(tmp[2]); reax->sbp[i].valency_boc= val;
val = atof(tmp[3]); reax->sbp[i].p_ovun5 = val;
val = atof(tmp[4]);
val = atof(tmp[5]); reax->sbp[i].chi = val;
val = atof(tmp[6]); reax->sbp[i].eta = 2.0 * val;
val = atof(tmp[7]); reax->sbp[i].p_hbond = (int) val;
/* line 3 */
fgets( s, MAX_LINE, fp );
c = Tokenize( s, &tmp );
val = atof(tmp[0]); reax->sbp[i].r_pi_pi = val;
val = atof(tmp[1]); reax->sbp[i].p_lp2 = val;
val = atof(tmp[2]);
val = atof(tmp[3]); reax->sbp[i].b_o_131 = val;
val = atof(tmp[4]); reax->sbp[i].b_o_132 = val;
val = atof(tmp[5]); reax->sbp[i].b_o_133 = val;
val = atof(tmp[6]);
val = atof(tmp[7]);
/* line 4 */
fgets( s, MAX_LINE, fp );
c = Tokenize( s, &tmp );
val = atof(tmp[0]); reax->sbp[i].p_ovun2 = val;
val = atof(tmp[1]); reax->sbp[i].p_val3 = val;
val = atof(tmp[2]);
val = atof(tmp[3]); reax->sbp[i].valency_val= val;
val = atof(tmp[4]); reax->sbp[i].p_val5 = val;
val = atof(tmp[5]); reax->sbp[i].rcore2 = val;
val = atof(tmp[6]); reax->sbp[i].ecore2 = val;
val = atof(tmp[7]); reax->sbp[i].acore2 = val;
if( reax->sbp[i].rcore2>0.01 && reax->sbp[i].acore2>0.01 ){ // Inner-wall
if( reax->sbp[i].gamma_w>0.5 ){ // Shielding vdWaals
if( reax->gp.vdw_type != 0 && reax->gp.vdw_type != 3 )
fprintf( stderr, "Warning: inconsistent vdWaals-parameters\n" \
"Force field parameters for element %s\n" \
"indicate inner wall+shielding, but earlier\n" \
"atoms indicate different vdWaals-method.\n" \
"This may cause division-by-zero errors.\n" \
"Keeping vdWaals-setting for earlier atoms.\n",
reax->sbp[i].name );
else{
reax->gp.vdw_type = 3;
#if defined(DEBUG)
fprintf( stderr, "vdWaals type for element %s: Shielding+inner-wall",
reax->sbp[i].name );
#endif
}
}
else { // No shielding vdWaals parameters present
if( reax->gp.vdw_type != 0 && reax->gp.vdw_type != 2 )
fprintf( stderr, "Warning: inconsistent vdWaals-parameters\n" \
"Force field parameters for element %s\n" \
"indicate inner wall without shielding, but earlier\n" \
"atoms indicate different vdWaals-method.\n" \
"This may cause division-by-zero errors.\n" \
"Keeping vdWaals-setting for earlier atoms.\n",
reax->sbp[i].name );
else{
reax->gp.vdw_type = 2;
#if defined(DEBUG)
fprintf( stderr,"vdWaals type for element%s: No Shielding,inner-wall",
reax->sbp[i].name );
#endif
}
}
}
else{ // No Inner wall parameters present
if( reax->sbp[i].gamma_w>0.5 ){ // Shielding vdWaals
if( reax->gp.vdw_type != 0 && reax->gp.vdw_type != 1 )
fprintf( stderr, "Warning: inconsistent vdWaals-parameters\n" \
"Force field parameters for element %s\n" \
"indicate shielding without inner wall, but earlier\n" \
"atoms indicate different vdWaals-method.\n" \
"This may cause division-by-zero errors.\n" \
"Keeping vdWaals-setting for earlier atoms.\n",
reax->sbp[i].name );
else{
reax->gp.vdw_type = 1;
#if defined(DEBUG)
fprintf( stderr,"vdWaals type for element%s: Shielding,no inner-wall",
reax->sbp[i].name );
#endif
}
}
else{
fprintf( stderr, "Error: inconsistent vdWaals-parameters\n"\
"No shielding or inner-wall set for element %s\n",
reax->sbp[i].name );
MPI_Abort( comm, INVALID_INPUT );
}
}
}
#if defined(DEBUG)
fprintf( stderr, "vdWaals type: %d\n", reax->gp.vdw_type );
#endif
/* Equate vval3 to valf for first-row elements (25/10/2004) */
for( i = 0; i < reax->num_atom_types; i++ )
if( reax->sbp[i].mass < 21 &&
reax->sbp[i].valency_val != reax->sbp[i].valency_boc ){
fprintf( stderr, "Warning: changed valency_val to valency_boc for %s\n",
reax->sbp[i].name );
reax->sbp[i].valency_val = reax->sbp[i].valency_boc;
}
/* next line is number of two body combination and some comments */
fgets(s,MAX_LINE,fp);
c=Tokenize(s,&tmp);
l = atoi(tmp[0]);
/* a line of comments */
fgets(s,MAX_LINE,fp);
for (i=0; i < l; i++) {
/* line 1 */
fgets(s,MAX_LINE,fp);
c=Tokenize(s,&tmp);
j = atoi(tmp[0]) - 1;
k = atoi(tmp[1]) - 1;
if (j < reax->num_atom_types && k < reax->num_atom_types) {
val = atof(tmp[2]); reax->tbp[j][k].De_s = val;
reax->tbp[k][j].De_s = val;
val = atof(tmp[3]); reax->tbp[j][k].De_p = val;
reax->tbp[k][j].De_p = val;
val = atof(tmp[4]); reax->tbp[j][k].De_pp = val;
reax->tbp[k][j].De_pp = val;
val = atof(tmp[5]); reax->tbp[j][k].p_be1 = val;
reax->tbp[k][j].p_be1 = val;
val = atof(tmp[6]); reax->tbp[j][k].p_bo5 = val;
reax->tbp[k][j].p_bo5 = val;
val = atof(tmp[7]); reax->tbp[j][k].v13cor = val;
reax->tbp[k][j].v13cor = val;
val = atof(tmp[8]); reax->tbp[j][k].p_bo6 = val;
reax->tbp[k][j].p_bo6 = val;
val = atof(tmp[9]); reax->tbp[j][k].p_ovun1 = val;
reax->tbp[k][j].p_ovun1 = val;
/* line 2 */
fgets(s,MAX_LINE,fp);
c=Tokenize(s,&tmp);
val = atof(tmp[0]); reax->tbp[j][k].p_be2 = val;
reax->tbp[k][j].p_be2 = val;
val = atof(tmp[1]); reax->tbp[j][k].p_bo3 = val;
reax->tbp[k][j].p_bo3 = val;
val = atof(tmp[2]); reax->tbp[j][k].p_bo4 = val;
reax->tbp[k][j].p_bo4 = val;
val = atof(tmp[3]);
val = atof(tmp[4]); reax->tbp[j][k].p_bo1 = val;
reax->tbp[k][j].p_bo1 = val;
val = atof(tmp[5]); reax->tbp[j][k].p_bo2 = val;
reax->tbp[k][j].p_bo2 = val;
val = atof(tmp[6]); reax->tbp[j][k].ovc = val;
reax->tbp[k][j].ovc = val;
val = atof(tmp[7]);
}
}
/* calculating combination rules and filling up remaining fields. */
for (i=0; i < reax->num_atom_types; i++)
for (j=i; j < reax->num_atom_types; j++) {
reax->tbp[i][j].r_s = 0.5 *
(reax->sbp[i].r_s + reax->sbp[j].r_s);
reax->tbp[j][i].r_s = 0.5 *
(reax->sbp[j].r_s + reax->sbp[i].r_s);
reax->tbp[i][j].r_p = 0.5 *
(reax->sbp[i].r_pi + reax->sbp[j].r_pi);
reax->tbp[j][i].r_p = 0.5 *
(reax->sbp[j].r_pi + reax->sbp[i].r_pi);
reax->tbp[i][j].r_pp = 0.5 *
(reax->sbp[i].r_pi_pi + reax->sbp[j].r_pi_pi);
reax->tbp[j][i].r_pp = 0.5 *
(reax->sbp[j].r_pi_pi + reax->sbp[i].r_pi_pi);
reax->tbp[i][j].p_boc3 =
sqrt(reax->sbp[i].b_o_132 *
reax->sbp[j].b_o_132);
reax->tbp[j][i].p_boc3 =
sqrt(reax->sbp[j].b_o_132 *
reax->sbp[i].b_o_132);
reax->tbp[i][j].p_boc4 =
sqrt(reax->sbp[i].b_o_131 *
reax->sbp[j].b_o_131);
reax->tbp[j][i].p_boc4 =
sqrt(reax->sbp[j].b_o_131 *
reax->sbp[i].b_o_131);
reax->tbp[i][j].p_boc5 =
sqrt(reax->sbp[i].b_o_133 *
reax->sbp[j].b_o_133);
reax->tbp[j][i].p_boc5 =
sqrt(reax->sbp[j].b_o_133 *
reax->sbp[i].b_o_133);
reax->tbp[i][j].D =
sqrt(reax->sbp[i].epsilon *
reax->sbp[j].epsilon);
reax->tbp[j][i].D =
sqrt(reax->sbp[j].epsilon *
reax->sbp[i].epsilon);
reax->tbp[i][j].alpha =
sqrt(reax->sbp[i].alpha *
reax->sbp[j].alpha);
reax->tbp[j][i].alpha =
sqrt(reax->sbp[j].alpha *
reax->sbp[i].alpha);
reax->tbp[i][j].r_vdW =
2.0 * sqrt(reax->sbp[i].r_vdw * reax->sbp[j].r_vdw);
reax->tbp[j][i].r_vdW =
2.0 * sqrt(reax->sbp[j].r_vdw * reax->sbp[i].r_vdw);
reax->tbp[i][j].gamma_w =
sqrt(reax->sbp[i].gamma_w *
reax->sbp[j].gamma_w);
reax->tbp[j][i].gamma_w =
sqrt(reax->sbp[j].gamma_w *
reax->sbp[i].gamma_w);
reax->tbp[i][j].gamma =
pow(reax->sbp[i].gamma *
reax->sbp[j].gamma,-1.5);
reax->tbp[j][i].gamma =
pow(reax->sbp[j].gamma *
reax->sbp[i].gamma,-1.5);
// additions for additional vdWaals interaction types - inner core
reax->tbp[i][j].rcore = reax->tbp[j][i].rcore =
sqrt( reax->sbp[i].rcore2 * reax->sbp[j].rcore2 );
reax->tbp[i][j].ecore = reax->tbp[j][i].ecore =
sqrt( reax->sbp[i].ecore2 * reax->sbp[j].ecore2 );
reax->tbp[i][j].acore = reax->tbp[j][i].acore =
sqrt( reax->sbp[i].acore2 * reax->sbp[j].acore2 );
}
/* next line is number of two body offdiagonal combinations and comments */
/* these are two body offdiagonal terms that are different from the
combination rules defined above */
fgets(s,MAX_LINE,fp);
c=Tokenize(s,&tmp);
l = atoi(tmp[0]);
for (i=0; i < l; i++) {
fgets(s,MAX_LINE,fp);
c=Tokenize(s,&tmp);
j = atoi(tmp[0]) - 1;
k = atoi(tmp[1]) - 1;
if (j < reax->num_atom_types && k < reax->num_atom_types) {
val = atof(tmp[2]);
if (val > 0.0) {
reax->tbp[j][k].D = val;
reax->tbp[k][j].D = val;
}
val = atof(tmp[3]);
if (val > 0.0) {
reax->tbp[j][k].r_vdW = 2 * val;
reax->tbp[k][j].r_vdW = 2 * val;
}
val = atof(tmp[4]);
if (val > 0.0) {
reax->tbp[j][k].alpha = val;
reax->tbp[k][j].alpha = val;
}
val = atof(tmp[5]);
if (val > 0.0) {
reax->tbp[j][k].r_s = val;
reax->tbp[k][j].r_s = val;
}
val = atof(tmp[6]);
if (val > 0.0) {
reax->tbp[j][k].r_p = val;
reax->tbp[k][j].r_p = val;
}
val = atof(tmp[7]);
if (val > 0.0) {
reax->tbp[j][k].r_pp = val;
reax->tbp[k][j].r_pp = val;
}
}
}
/* 3-body parameters -
supports multi-well potentials (upto MAX_3BODY_PARAM in mytypes.h) */
/* clear entries first */
for( i = 0; i < reax->num_atom_types; ++i )
for( j = 0; j < reax->num_atom_types; ++j )
for( k = 0; k < reax->num_atom_types; ++k )
reax->thbp[i][j][k].cnt = 0;
/* next line is number of 3-body params and some comments */
fgets( s, MAX_LINE, fp );
c = Tokenize( s, &tmp );
l = atoi( tmp[0] );
for( i = 0; i < l; i++ ) {
fgets(s,MAX_LINE,fp);
c=Tokenize(s,&tmp);
j = atoi(tmp[0]) - 1;
k = atoi(tmp[1]) - 1;
m = atoi(tmp[2]) - 1;
if (j < reax->num_atom_types && k < reax->num_atom_types &&
m < reax->num_atom_types) {
cnt = reax->thbp[j][k][m].cnt;
reax->thbp[j][k][m].cnt++;
reax->thbp[m][k][j].cnt++;
val = atof(tmp[3]);
reax->thbp[j][k][m].prm[cnt].theta_00 = val;
reax->thbp[m][k][j].prm[cnt].theta_00 = val;
val = atof(tmp[4]);
reax->thbp[j][k][m].prm[cnt].p_val1 = val;
reax->thbp[m][k][j].prm[cnt].p_val1 = val;
val = atof(tmp[5]);
reax->thbp[j][k][m].prm[cnt].p_val2 = val;
reax->thbp[m][k][j].prm[cnt].p_val2 = val;
val = atof(tmp[6]);
reax->thbp[j][k][m].prm[cnt].p_coa1 = val;
reax->thbp[m][k][j].prm[cnt].p_coa1 = val;
val = atof(tmp[7]);
reax->thbp[j][k][m].prm[cnt].p_val7 = val;
reax->thbp[m][k][j].prm[cnt].p_val7 = val;
val = atof(tmp[8]);
reax->thbp[j][k][m].prm[cnt].p_pen1 = val;
reax->thbp[m][k][j].prm[cnt].p_pen1 = val;
val = atof(tmp[9]);
reax->thbp[j][k][m].prm[cnt].p_val4 = val;
reax->thbp[m][k][j].prm[cnt].p_val4 = val;
}
}
/* 4-body parameters are entered in compact form. i.e. 0-X-Y-0
correspond to any type of pair of atoms in 1 and 4
position. However, explicit X-Y-Z-W takes precedence over the
default description.
supports multi-well potentials (upto MAX_4BODY_PARAM in mytypes.h)
IMPORTANT: for now, directions on how to read multi-entries from ffield
is not clear */
/* clear all entries first */
for( i = 0; i < reax->num_atom_types; ++i )
for( j = 0; j < reax->num_atom_types; ++j )
for( k = 0; k < reax->num_atom_types; ++k )
for( m = 0; m < reax->num_atom_types; ++m ) {
reax->fbp[i][j][k][m].cnt = 0;
tor_flag[i][j][k][m] = 0;
}
/* next line is number of 4-body params and some comments */
fgets( s, MAX_LINE, fp );
c = Tokenize( s, &tmp );
l = atoi( tmp[0] );
for( i = 0; i < l; i++ ) {
fgets( s, MAX_LINE, fp );
c = Tokenize( s, &tmp );
j = atoi(tmp[0]) - 1;
k = atoi(tmp[1]) - 1;
m = atoi(tmp[2]) - 1;
n = atoi(tmp[3]) - 1;
if (j >= 0 && n >= 0) { // this means the entry is not in compact form
if (j < reax->num_atom_types && k < reax->num_atom_types &&
m < reax->num_atom_types && n < reax->num_atom_types) {
/* these flags ensure that this entry take precedence
over the compact form entries */
tor_flag[j][k][m][n] = 1;
tor_flag[n][m][k][j] = 1;
reax->fbp[j][k][m][n].cnt = 1;
reax->fbp[n][m][k][j].cnt = 1;
/* cnt = reax->fbp[j][k][m][n].cnt;
reax->fbp[j][k][m][n].cnt++;
reax->fbp[n][m][k][j].cnt++; */
val = atof(tmp[4]);
reax->fbp[j][k][m][n].prm[0].V1 = val;
reax->fbp[n][m][k][j].prm[0].V1 = val;
val = atof(tmp[5]);
reax->fbp[j][k][m][n].prm[0].V2 = val;
reax->fbp[n][m][k][j].prm[0].V2 = val;
val = atof(tmp[6]);
reax->fbp[j][k][m][n].prm[0].V3 = val;
reax->fbp[n][m][k][j].prm[0].V3 = val;
val = atof(tmp[7]);
reax->fbp[j][k][m][n].prm[0].p_tor1 = val;
reax->fbp[n][m][k][j].prm[0].p_tor1 = val;
val = atof(tmp[8]);
reax->fbp[j][k][m][n].prm[0].p_cot1 = val;
reax->fbp[n][m][k][j].prm[0].p_cot1 = val;
}
}
else { /* This means the entry is of the form 0-X-Y-0 */
if( k < reax->num_atom_types && m < reax->num_atom_types )
for( p = 0; p < reax->num_atom_types; p++ )
for( o = 0; o < reax->num_atom_types; o++ ) {
reax->fbp[p][k][m][o].cnt = 1;
reax->fbp[o][m][k][p].cnt = 1;
/* cnt = reax->fbp[p][k][m][o].cnt;
reax->fbp[p][k][m][o].cnt++;
reax->fbp[o][m][k][p].cnt++; */
if (tor_flag[p][k][m][o] == 0) {
reax->fbp[p][k][m][o].prm[0].V1 = atof(tmp[4]);
reax->fbp[p][k][m][o].prm[0].V2 = atof(tmp[5]);
reax->fbp[p][k][m][o].prm[0].V3 = atof(tmp[6]);
reax->fbp[p][k][m][o].prm[0].p_tor1 = atof(tmp[7]);
reax->fbp[p][k][m][o].prm[0].p_cot1 = atof(tmp[8]);
}
if (tor_flag[o][m][k][p] == 0) {
reax->fbp[o][m][k][p].prm[0].V1 = atof(tmp[4]);
reax->fbp[o][m][k][p].prm[0].V2 = atof(tmp[5]);
reax->fbp[o][m][k][p].prm[0].V3 = atof(tmp[6]);
reax->fbp[o][m][k][p].prm[0].p_tor1 = atof(tmp[7]);
reax->fbp[o][m][k][p].prm[0].p_cot1 = atof(tmp[8]);
}
}
}
}
/* next line is number of hydrogen bond params and some comments */
fgets( s, MAX_LINE, fp );
c = Tokenize( s, &tmp );
l = atoi( tmp[0] );
for( i = 0; i < l; i++ ) {
fgets( s, MAX_LINE, fp );
c = Tokenize( s, &tmp );
j = atoi(tmp[0]) - 1;
k = atoi(tmp[1]) - 1;
m = atoi(tmp[2]) - 1;
if( j < reax->num_atom_types && m < reax->num_atom_types ) {
val = atof(tmp[3]);
reax->hbp[j][k][m].r0_hb = val;
val = atof(tmp[4]);
reax->hbp[j][k][m].p_hb1 = val;
val = atof(tmp[5]);
reax->hbp[j][k][m].p_hb2 = val;
val = atof(tmp[6]);
reax->hbp[j][k][m].p_hb3 = val;
}
}
/* deallocate helper storage */
for( i = 0; i < MAX_TOKENS; i++ )
free( tmp[i] );
free( tmp );
free( s );
/* deallocate tor_flag */
for( i = 0; i < reax->num_atom_types; i++ ) {
for( j = 0; j < reax->num_atom_types; j++ ) {
for( k = 0; k < reax->num_atom_types; k++ ) {
free( tor_flag[i][j][k] );
}
free( tor_flag[i][j] );
}
free( tor_flag[i] );
}
free( tor_flag );
// close file
fclose(fp);
#if defined(DEBUG_FOCUS)
fprintf( stderr, "force field read\n" );
#endif
return SUCCESS;
}
Event Timeline
Log In to Comment