Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90471409
reaxc_lookup.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Nov 1, 23:56
Size
10 KB
Mime Type
text/x-c
Expires
Sun, Nov 3, 23:56 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22055740
Attached To
rLAMMPS lammps
reaxc_lookup.cpp
View Options
/*----------------------------------------------------------------------
PuReMD - Purdue ReaxFF Molecular Dynamics Program
Copyright (2010) Purdue University
Hasan Metin Aktulga, hmaktulga@lbl.gov
Joseph Fogarty, jcfogart@mail.usf.edu
Sagar Pandit, pandit@usf.edu
Ananth Y Grama, ayg@cs.purdue.edu
Please cite the related publication:
H. M. Aktulga, J. C. Fogarty, S. A. Pandit, A. Y. Grama,
"Parallel Reactive Molecular Dynamics: Numerical Methods and
Algorithmic Techniques", Parallel Computing, in press.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details:
<http://www.gnu.org/licenses/>.
----------------------------------------------------------------------*/
#include "pair_reax_c.h"
#if defined(PURE_REAX)
#include "lookup.h"
#include "nonbonded.h"
#include "tool_box.h"
#elif defined(LAMMPS_REAX)
#include "reaxc_lookup.h"
#include "reaxc_nonbonded.h"
#include "reaxc_tool_box.h"
#endif
LR_lookup_table **LR;
/* Fills solution into x. Warning: will modify c and d! */
void Tridiagonal_Solve( const real *a, const real *b,
real *c, real *d, real *x, unsigned int n){
int i;
real id;
/* Modify the coefficients. */
c[0] /= b[0]; /* Division by zero risk. */
d[0] /= b[0]; /* Division by zero would imply a singular matrix. */
for(i = 1; i < n; i++){
id = (b[i] - c[i-1] * a[i]); /* Division by zero risk. */
c[i] /= id; /* Last value calculated is redundant. */
d[i] = (d[i] - d[i-1] * a[i])/id;
}
/* Now back substitute. */
x[n - 1] = d[n - 1];
for(i = n - 2; i >= 0; i--)
x[i] = d[i] - c[i] * x[i + 1];
}
void Natural_Cubic_Spline( const real *h, const real *f,
cubic_spline_coef *coef, unsigned int n,
MPI_Comm comm )
{
int i;
real *a, *b, *c, *d, *v;
/* allocate space for the linear system */
a = (real*) smalloc( n * sizeof(real), "cubic_spline:a", comm );
b = (real*) smalloc( n * sizeof(real), "cubic_spline:a", comm );
c = (real*) smalloc( n * sizeof(real), "cubic_spline:a", comm );
d = (real*) smalloc( n * sizeof(real), "cubic_spline:a", comm );
v = (real*) smalloc( n * sizeof(real), "cubic_spline:a", comm );
/* build the linear system */
a[0] = a[1] = a[n-1] = 0;
for( i = 2; i < n-1; ++i )
a[i] = h[i-1];
b[0] = b[n-1] = 0;
for( i = 1; i < n-1; ++i )
b[i] = 2 * (h[i-1] + h[i]);
c[0] = c[n-2] = c[n-1] = 0;
for( i = 1; i < n-2; ++i )
c[i] = h[i];
d[0] = d[n-1] = 0;
for( i = 1; i < n-1; ++i )
d[i] = 6 * ((f[i+1]-f[i])/h[i] - (f[i]-f[i-1])/h[i-1]);
v[0] = 0;
v[n-1] = 0;
Tridiagonal_Solve( &(a[1]), &(b[1]), &(c[1]), &(d[1]), &(v[1]), n-2 );
for( i = 1; i < n; ++i ){
coef[i-1].d = (v[i] - v[i-1]) / (6*h[i-1]);
coef[i-1].c = v[i]/2;
coef[i-1].b = (f[i]-f[i-1])/h[i-1] + h[i-1]*(2*v[i] + v[i-1])/6;
coef[i-1].a = f[i];
}
sfree( a, "cubic_spline:a" );
sfree( b, "cubic_spline:b" );
sfree( c, "cubic_spline:c" );
sfree( d, "cubic_spline:d" );
sfree( v, "cubic_spline:v" );
}
void Complete_Cubic_Spline( const real *h, const real *f, real v0, real vlast,
cubic_spline_coef *coef, unsigned int n,
MPI_Comm comm )
{
int i;
real *a, *b, *c, *d, *v;
/* allocate space for the linear system */
a = (real*) smalloc( n * sizeof(real), "cubic_spline:a", comm );
b = (real*) smalloc( n * sizeof(real), "cubic_spline:a", comm );
c = (real*) smalloc( n * sizeof(real), "cubic_spline:a", comm );
d = (real*) smalloc( n * sizeof(real), "cubic_spline:a", comm );
v = (real*) smalloc( n * sizeof(real), "cubic_spline:a", comm );
/* build the linear system */
a[0] = 0;
for( i = 1; i < n; ++i )
a[i] = h[i-1];
b[0] = 2*h[0];
for( i = 1; i < n; ++i )
b[i] = 2 * (h[i-1] + h[i]);
c[n-1] = 0;
for( i = 0; i < n-1; ++i )
c[i] = h[i];
d[0] = 6 * (f[1]-f[0])/h[0] - 6 * v0;
d[n-1] = 6 * vlast - 6 * (f[n-1]-f[n-2]/h[n-2]);
for( i = 1; i < n-1; ++i )
d[i] = 6 * ((f[i+1]-f[i])/h[i] - (f[i]-f[i-1])/h[i-1]);
Tridiagonal_Solve( &(a[0]), &(b[0]), &(c[0]), &(d[0]), &(v[0]), n );
for( i = 1; i < n; ++i ){
coef[i-1].d = (v[i] - v[i-1]) / (6*h[i-1]);
coef[i-1].c = v[i]/2;
coef[i-1].b = (f[i]-f[i-1])/h[i-1] + h[i-1]*(2*v[i] + v[i-1])/6;
coef[i-1].a = f[i];
}
sfree( a, "cubic_spline:a" );
sfree( b, "cubic_spline:b" );
sfree( c, "cubic_spline:c" );
sfree( d, "cubic_spline:d" );
sfree( v, "cubic_spline:v" );
}
void LR_Lookup( LR_lookup_table *t, real r, LR_data *y )
{
int i;
real base, dif;
i = (int)(r * t->inv_dx);
if( i == 0 ) ++i;
base = (real)(i+1) * t->dx;
dif = r - base;
y->e_vdW = ((t->vdW[i].d*dif + t->vdW[i].c)*dif + t->vdW[i].b)*dif +
t->vdW[i].a;
y->CEvd = ((t->CEvd[i].d*dif + t->CEvd[i].c)*dif +
t->CEvd[i].b)*dif + t->CEvd[i].a;
y->e_ele = ((t->ele[i].d*dif + t->ele[i].c)*dif + t->ele[i].b)*dif +
t->ele[i].a;
y->CEclmb = ((t->CEclmb[i].d*dif + t->CEclmb[i].c)*dif + t->CEclmb[i].b)*dif +
t->CEclmb[i].a;
y->H = y->e_ele * EV_to_KCALpMOL / C_ele;
}
int Init_Lookup_Tables( reax_system *system, control_params *control,
storage *workspace, mpi_datatypes *mpi_data, char *msg )
{
int i, j, r;
int num_atom_types;
int existing_types[MAX_ATOM_TYPES], aggregated[MAX_ATOM_TYPES];
real dr;
real *h, *fh, *fvdw, *fele, *fCEvd, *fCEclmb;
real v0_vdw, v0_ele, vlast_vdw, vlast_ele;
MPI_Comm comm;
/* initializations */
v0_vdw = 0;
v0_ele = 0;
vlast_vdw = 0;
vlast_ele = 0;
comm = mpi_data->world;
num_atom_types = system->reax_param.num_atom_types;
dr = control->nonb_cut / control->tabulate;
h = (real*)
smalloc( (control->tabulate+2) * sizeof(real), "lookup:h", comm );
fh = (real*)
smalloc( (control->tabulate+2) * sizeof(real), "lookup:fh", comm );
fvdw = (real*)
smalloc( (control->tabulate+2) * sizeof(real), "lookup:fvdw", comm );
fCEvd = (real*)
smalloc( (control->tabulate+2) * sizeof(real), "lookup:fCEvd", comm );
fele = (real*)
smalloc( (control->tabulate+2) * sizeof(real), "lookup:fele", comm );
fCEclmb = (real*)
smalloc( (control->tabulate+2) * sizeof(real), "lookup:fCEclmb", comm );
/* allocate Long-Range LookUp Table space based on
number of atom types in the ffield file */
LR = (LR_lookup_table**)
scalloc( num_atom_types, sizeof(LR_lookup_table*), "lookup:LR", comm );
for( i = 0; i < num_atom_types; ++i )
LR[i] = (LR_lookup_table*)
scalloc( num_atom_types, sizeof(LR_lookup_table), "lookup:LR[i]", comm );
/* most atom types in ffield file will not exist in the current
simulation. to avoid unnecessary lookup table space, determine
the atom types that exist in the current simulation */
for( i = 0; i < MAX_ATOM_TYPES; ++i )
existing_types[i] = 0;
for( i = 0; i < system->n; ++i )
existing_types[ system->my_atoms[i].type ] = 1;
MPI_Allreduce( existing_types, aggregated, MAX_ATOM_TYPES,
MPI_INT, MPI_SUM, mpi_data->world );
/* fill in the lookup table entries for existing atom types.
only lower half should be enough. */
for( i = 0; i < num_atom_types; ++i )
if( aggregated[i] )
//for( j = 0; j < num_atom_types; ++j )
for( j = i; j < num_atom_types; ++j )
if( aggregated[j] ) {
LR[i][j].xmin = 0;
LR[i][j].xmax = control->nonb_cut;
LR[i][j].n = control->tabulate + 2;
LR[i][j].dx = dr;
LR[i][j].inv_dx = control->tabulate / control->nonb_cut;
LR[i][j].y = (LR_data*)
smalloc( LR[i][j].n * sizeof(LR_data), "lookup:LR[i,j].y", comm );
LR[i][j].H = (cubic_spline_coef*)
smalloc( LR[i][j].n*sizeof(cubic_spline_coef),"lookup:LR[i,j].H" ,
comm );
LR[i][j].vdW = (cubic_spline_coef*)
smalloc( LR[i][j].n*sizeof(cubic_spline_coef),"lookup:LR[i,j].vdW",
comm);
LR[i][j].CEvd = (cubic_spline_coef*)
smalloc( LR[i][j].n*sizeof(cubic_spline_coef),"lookup:LR[i,j].CEvd",
comm);
LR[i][j].ele = (cubic_spline_coef*)
smalloc( LR[i][j].n*sizeof(cubic_spline_coef),"lookup:LR[i,j].ele",
comm );
LR[i][j].CEclmb = (cubic_spline_coef*)
smalloc( LR[i][j].n*sizeof(cubic_spline_coef),
"lookup:LR[i,j].CEclmb", comm );
for( r = 1; r <= control->tabulate; ++r ) {
LR_vdW_Coulomb( system, workspace, i, j, r * dr, &(LR[i][j].y[r]) );
h[r] = LR[i][j].dx;
fh[r] = LR[i][j].y[r].H;
fvdw[r] = LR[i][j].y[r].e_vdW;
fCEvd[r] = LR[i][j].y[r].CEvd;
fele[r] = LR[i][j].y[r].e_ele;
fCEclmb[r] = LR[i][j].y[r].CEclmb;
}
// init the start-end points
h[r] = LR[i][j].dx;
v0_vdw = LR[i][j].y[1].CEvd;
v0_ele = LR[i][j].y[1].CEclmb;
fh[r] = fh[r-1];
fvdw[r] = fvdw[r-1];
fCEvd[r] = fCEvd[r-1];
fele[r] = fele[r-1];
fCEclmb[r] = fCEclmb[r-1];
vlast_vdw = fCEvd[r-1];
vlast_ele = fele[r-1];
Natural_Cubic_Spline( &h[1], &fh[1],
&(LR[i][j].H[1]), control->tabulate+1, comm );
Complete_Cubic_Spline( &h[1], &fvdw[1], v0_vdw, vlast_vdw,
&(LR[i][j].vdW[1]), control->tabulate+1,
comm );
Natural_Cubic_Spline( &h[1], &fCEvd[1],
&(LR[i][j].CEvd[1]), control->tabulate+1,
comm );
Complete_Cubic_Spline( &h[1], &fele[1], v0_ele, vlast_ele,
&(LR[i][j].ele[1]), control->tabulate+1,
comm );
Natural_Cubic_Spline( &h[1], &fCEclmb[1],
&(LR[i][j].CEclmb[1]), control->tabulate+1,
comm );
}
else{
LR[i][j].n = 0;
}
free(h);
free(fh);
free(fvdw);
free(fCEvd);
free(fele);
free(fCEclmb);
return 1;
}
void Deallocate_Lookup_Tables( reax_system *system )
{
int i, j;
int ntypes;
ntypes = system->reax_param.num_atom_types;
for( i = 0; i < ntypes; ++i ) {
for( j = i; j < ntypes; ++j )
if( LR[i][j].n ) {
sfree( LR[i][j].y, "LR[i,j].y" );
sfree( LR[i][j].H, "LR[i,j].H" );
sfree( LR[i][j].vdW, "LR[i,j].vdW" );
sfree( LR[i][j].CEvd, "LR[i,j].CEvd" );
sfree( LR[i][j].ele, "LR[i,j].ele" );
sfree( LR[i][j].CEclmb, "LR[i,j].CEclmb" );
}
sfree( LR[i], "LR[i]" );
}
sfree( LR, "LR" );
}
Event Timeline
Log In to Comment