<span id="index-0"></span><h1>angle_style dipole command<a class="headerlink" href="#angle-style-dipole-command" title="Permalink to this headline">¶</a></h1>
<p>Example: if gamma0 is set to 0 degrees, the torque generated by
the potential will tend to align the dipole along the reference
direction defined by the (bond) vector r_ij (in other words, mu_j is
restrained to point towards atom ‘i’).</p>
<p>Note that the angle dipole potential does not give rise to any force,
because it does not depend on the distance between i and j (it only
depends on the angle between mu_j and r_ij).</p>
<p>The following coefficients must be defined for each angle type via the
<a class="reference internal" href="angle_coeff.html"><em>angle_coeff</em></a> command as in the example above, or in
the data file or restart files read by the <a class="reference internal" href="read_data.html"><em>read_data</em></a>
or <a class="reference internal" href="read_restart.html"><em>read_restart</em></a> commands:</p>
<ul class="simple">
<li>K (energy)</li>
<li>gamma0 (degrees)</li>
</ul>
<hr class="docutils" />
<p>Styles with a <em>cuda</em>, <em>gpu</em>, <em>intel</em>, <em>kk</em>, <em>omp</em>, or <em>opt</em> suffix are
functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available
hardware, as discussed in <a class="reference internal" href="Section_accelerate.html"><em>Section_accelerate</em></a>
of the manual. The accelerated styles take the same arguments and
should produce the same results, except for round-off and precision
issues.</p>
<p>These accelerated styles are part of the USER-CUDA, GPU, USER-INTEL,
KOKKOS, USER-OMP and OPT packages, respectively. They are only
enabled if LAMMPS was built with those packages. See the <a class="reference internal" href="Section_start.html#start-3"><span>Making LAMMPS</span></a> section for more info.</p>
<p>You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the <a class="reference internal" href="Section_start.html#start-6"><span>-suffix command-line switch</span></a> when you invoke LAMMPS, or you can
use the <a class="reference internal" href="suffix.html"><em>suffix</em></a> command in your input script.</p>
<p>See <a class="reference internal" href="Section_accelerate.html"><em>Section_accelerate</em></a> of the manual for
more instructions on how to use the accelerated styles effectively.</p>
</div>
<div class="section" id="restrictions">
<h2>Restrictions<a class="headerlink" href="#restrictions" title="Permalink to this headline">¶</a></h2>
<p>This angle style can only be used if LAMMPS was built with the
USER-MISC package. See the <span class="xref std std-ref">Making LAMMPS</span>
section for more info on packages.</p>
<div class="admonition warning">
<p class="first admonition-title">Warning</p>
<p class="last">In the “Angles” section of the data file, the atom ID
‘j’ corresponding to the dipole to restrain must come before the atom
ID of the reference atom ‘i’. A third atom ID ‘k’ must also be
provided, although ‘k’ is just a ‘dummy’ atom which can be any atom;
it may be useful to choose a convention (e.g., ‘k’=’i’) and adhere to
it. For example, if ID=1 for the dipolar atom to restrain, and ID=2
for the reference atom, the corresponding line in the “Angles” section
of the data file would read: X X 1 2 2</p>
</div>
<p>The “newton” command for intramolecular interactions must be “on”
(which is the default).</p>
<p>This angle style should not be used with SHAKE.</p>
</div>
<div class="section" id="related-commands">
<h2>Related commands<a class="headerlink" href="#related-commands" title="Permalink to this headline">¶</a></h2>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.