<PRE>fix ID group-ID lb/fluid nevery LBtype viscosity density keyword values ...
</PRE>
<UL><LI>ID, group-ID are documented in <A HREF = "fix.html">fix</A> command
<LI>lb/fluid = style name of this fix command
<LI>nevery = update the lattice-Boltzmann fluid every this many timesteps
<LI>LBtype = 1 to use the standard finite difference LB integrator,
2 to use the LB integrator of <A HREF = "#Ollila">Ollila et al.</A>
<LI>viscosity = the fluid viscosity (units of mass/(time*length)).
<LI>density = the fluid density.
<LI>zero or more keyword/value pairs may be appended
<LI>keyword = <I>setArea</I> or <I>setGamma</I> or <I>scaleGamma</I> or <I>dx</I> or <I>dm</I> or <I>a0</I> or <I>noise</I> or <I>calcforce</I> or <I>trilinear</I> or <I>D3Q19</I> or <I>read_restart</I> or <I>write_restart</I> or <I>zwall_velocity</I> or <I>bodyforce</I> or <I>printfluid</I>
<PRE> <I>setArea</I> values = type node_area
type = atom type (1-N)
node_area = portion of the surface area of the composite object associated with the particular atom type (used when the force coupling constant is set by default).
<I>setGamma</I> values = gamma
gamma = user set value for the force coupling constant.
<I>scaleGamma</I> values = type gammaFactor
type = atom type (1-N)
gammaFactor = factor to scale the <I>setGamma</I> gamma value by, for the specified atom type.
<I>dx</I> values = dx_LB = the lattice spacing.
<I>dm</I> values = dm_LB = the lattice-Boltzmann mass unit.
<I>a0</I> values = a_0_real = the square of the speed of sound in the fluid.
<I>noise</I> values = Temperature seed
Temperature = fluid temperature.
seed = random number generator seed (positive integer)
<I>calcforce</I> values = N forcegroup-ID
N = output the force and torque every N timesteps
forcegroup-ID = ID of the particle group to calculate the force and torque of
<I>trilinear</I> values = none (used to switch from the default Peskin interpolation stencil to the trilinear stencil).
<I>D3Q19</I> values = none (used to switch from the default D3Q15, 15 velocity lattice, to the D3Q19, 19 velocity lattice).
<I>read_restart</I> values = restart file = name of the restart file to use to restart a fluid run.
<I>write_restart</I> values = N = write a restart file every N MD timesteps.
<I>zwall_velocity</I> values = velocity_bottom velocity_top = velocities along the y-direction of the bottom and top walls (located at z=zmin and z=zmax).
<I>bodyforce</I> values = bodyforcex bodyforcey bodyforcez = the x,y and z components of a constant body force added to the fluid.
<I>printfluid</I> values = N = print the fluid density and velocity at each grid point every N timesteps.
<P>and an area of dx_lb^2 per node, used to calculate the fluid mass at
the particle node location, is assumed.
</P>
<P>dx is chosen such that tau/(delta t_LB) =
(3 eta dt_LB)/(rho dx_lb^2) is approximately equal to 1.
dm is set equal to 1.0.
a0 is set equal to (1/3)*(dx_lb/dt_lb)^2.
The Peskin stencil is used as the default interpolation method.
The D3Q15 lattice is used for the lattice-Boltzmann algorithm.
If walls are present, they are assumed to be stationary.
</P>
<HR>
<A NAME = "Ollila"></A>
<P><B>(Ollila et al.)</B> Ollila, S.T.T., Denniston, C., Karttunen, M., and Ala-Nissila, T., Fluctuating lattice-Boltzmann model for complex fluids, J. Chem. Phys. 134 (2011) 064902.
</P>
<A NAME = "Mackay"></A>
<P><B>(Mackay et al.)</B> Mackay, F. E., Ollila, S.T.T., and Denniston, C., Hydrodynamic Forces Implemented into LAMMPS through a lattice-Boltzmann fluid, Computer Physics Communications 184 (2013) 2021-2031.
</P>
<A NAME = "Mackay2"></A>
<P><B>(Mackay and Denniston)</B> Mackay, F. E., and Denniston, C., Coupling MD particles to a lattice-Boltzmann fluid through the use of conservative forces, J. Comput. Phys. 237 (2013) 289-298.
</P>
<A NAME = "Adhikari"></A>
<P><B>(Adhikari et al.)</B> Adhikari, R., Stratford, K., Cates, M. E., and Wagner, A. J., Fluctuating lattice Boltzmann, Europhys. Lett. 71 (2005) 473-479.