force to the atoms after fix shake operates, then this fix will not
take them into account and the time integration will typically not
satisfy the SHAKE constraints. The solution for this is to make sure
that fix shake is defined in your input script after any other fixes
which add or change forces (to atoms that fix shake operates on).</p>
</div>
<hr class="docutils" />
<p>The <em>mol</em> keyword should be used when other commands, such as <a class="reference internal" href="fix_deposit.html"><em>fix deposit</em></a> or <a class="reference internal" href="fix_pour.html"><em>fix pour</em></a>, add molecules
on-the-fly during a simulation, and you wish to contrain the new
molecules via SHAKE. You specify a <em>template-ID</em> previously defined
using the <a class="reference internal" href="molecule.html"><em>molecule</em></a> command, which reads a file that
defines the molecule. You must use the same <em>template-ID</em> that the
command adding molecules uses. The coordinates, atom types, special
bond restrictions, and SHAKE info can be specified in the molecule
file. See the <a class="reference internal" href="molecule.html"><em>molecule</em></a> command for details. The only
settings required to be in this file (by this command) are the SHAKE
info of atoms in the molecule.</p>
<hr class="docutils" />
<p>Styles with a <em>cuda</em> suffix are functionally the same as the
corresponding style without the suffix. They have been optimized to
run faster, depending on your available hardware, as discussed in
<a class="reference internal" href="Section_accelerate.html"><em>Section_accelerate</em></a> of the manual. The
accelerated styles take the same arguments and should produce the same
results, except for round-off and precision issues.</p>
<p>These accelerated styles are part of the USER-CUDA package. They are
only enabled if LAMMPS was built with that package. See the <a class="reference internal" href="Section_start.html#start-3"><span>Making LAMMPS</span></a> section for more info.</p>
<p>You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the <a class="reference internal" href="Section_start.html#start-7"><span>-suffix command-line switch</span></a> when you invoke LAMMPS, or you can
use the <a class="reference internal" href="suffix.html"><em>suffix</em></a> command in your input script.</p>
<p>See <a class="reference internal" href="Section_accelerate.html"><em>Section_accelerate</em></a> of the manual for
more instructions on how to use the accelerated styles effectively.</p>
<hr class="docutils" />
<p><strong>RATTLE:</strong></p>
<p>The velocity constraints lead to a linear system of equations which
can be solved analytically. The implementation of the algorithm in
<h2>Restart, fix_modify, output, run start/stop, minimize info<a class="headerlink" href="#restart-fix-modify-output-run-start-stop-minimize-info" title="Permalink to this headline">¶</a></h2>
<p>No information about these fixes is written to <a class="reference internal" href="restart.html"><em>binary restart files</em></a>. None of the <a class="reference internal" href="fix_modify.html"><em>fix_modify</em></a> options
are relevant to these fixes. No global or per-atom quantities are
stored by these fixes for access by various <a class="reference internal" href="Section_howto.html#howto-15"><span>output commands</span></a>. No parameter of these fixes
can be used with the <em>start/stop</em> keywords of the <a class="reference internal" href="run.html"><em>run</em></a>
command. These fixes are not invoked during <a class="reference internal" href="minimize.html"><em>energy minimization</em></a>.</p>
</div>
<div class="section" id="restrictions">
<h2>Restrictions<a class="headerlink" href="#restrictions" title="Permalink to this headline">¶</a></h2>
<p>These fixes are part of the RIGID package. They are only enabled if
LAMMPS was built with that package. See the <a class="reference internal" href="Section_start.html#start-3"><span>Making LAMMPS</span></a> section for more info.</p>
<p>For computational efficiency, there can only be one shake or rattle
fix defined in a simulation.</p>
<p>If you use a tolerance that is too large or a max-iteration count that
is too small, the constraints will not be enforced very strongly,
which can lead to poor energy conservation. You can test for this in
your system by running a constant NVE simulation with a particular set
of SHAKE parameters and monitoring the energy versus time.</p>
<p>SHAKE or RATTLE should not be used to contrain an angle at 180 degrees
(e.g. linear CO2 molecule). This causes numeric difficulties.</p>
<p><strong>Related commands:</strong> none</p>
<p><strong>Default:</strong> none</p>
<hr class="docutils" />
<p id="ryckaert"><strong>(Ryckaert)</strong> J.-P. Ryckaert, G. Ciccotti and H. J. C. Berendsen,
J of Comp Phys, 23, 327-341 (1977).</p>
<p id="andersen"><strong>(Andersen)</strong> H. Andersen, J of Comp Phys, 52, 24-34 (1983).</p>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.