<li>style = <em>lj/charmm/coul/charmm</em> or <em>lj/charmm/coul/charmm/implicit</em> or <em>lj/charmm/coul/long</em> or <em>lj/charmm/coul/msm</em></li>
<li>args = list of arguments for a particular style</li>
<p>Note that sigma is defined in the LJ formula as the zero-crossing
distance for the potential, not as the energy minimum at 2^(1/6)
sigma.</p>
<p>The latter 2 coefficients are optional. If they are specified, they
are used in the LJ formula between 2 atoms of these types which are
also first and fourth atoms in any dihedral. No cutoffs are specified
because this CHARMM force field does not allow varying cutoffs for
individual atom pairs; all pairs use the global cutoff(s) specified in
the pair_style command.</p>
<hr class="docutils" />
<p>Styles with a <em>gpu</em>, <em>intel</em>, <em>kk</em>, <em>omp</em>, or <em>opt</em> suffix are
functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available
hardware, as discussed in <a class="reference internal" href="Section_accelerate.html"><span class="doc">Section_accelerate</span></a>
of the manual. The accelerated styles take the same arguments and
should produce the same results, except for round-off and precision
issues.</p>
<p>These accelerated styles are part of the GPU, USER-INTEL, KOKKOS,
USER-OMP and OPT packages, respectively. They are only enabled if
LAMMPS was built with those packages. See the <a class="reference internal" href="Section_start.html#start-3"><span class="std std-ref">Making LAMMPS</span></a> section for more info.</p>
<p>You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the <a class="reference internal" href="Section_start.html#start-7"><span class="std std-ref">-suffix command-line switch</span></a> when you invoke LAMMPS, or you can
use the <a class="reference internal" href="suffix.html"><span class="doc">suffix</span></a> command in your input script.</p>
<p>See <a class="reference internal" href="Section_accelerate.html"><span class="doc">Section_accelerate</span></a> of the manual for
more instructions on how to use the accelerated styles effectively.</p>
corrections to energy and pressure, since the Lennard-Jones portion of
the pair interaction is smoothed to 0.0 at the cutoff.</p>
<p>All of the lj/charmm pair styles write their information to <a class="reference internal" href="restart.html"><span class="doc">binary restart files</span></a>, so pair_style and pair_coeff commands do
not need to be specified in an input script that reads a restart file.</p>
<p>The lj/charmm/coul/long pair style supports the use of the <em>inner</em>,
<em>middle</em>, and <em>outer</em> keywords of the <a class="reference internal" href="run_style.html"><span class="doc">run_style respa</span></a>
command, meaning the pairwise forces can be partitioned by distance at
different levels of the rRESPA hierarchy. The other styles only
support the <em>pair</em> keyword of run_style respa. See the
<a class="reference internal" href="run_style.html"><span class="doc">run_style</span></a> command for details.</p>
</div>
<hr class="docutils" />
<div class="section" id="restrictions">
<h2>Restrictions</h2>
<p>The <em>lj/charmm/coul/charmm</em> and <em>lj/charmm/coul/charmm/implicit</em>
styles are part of the MOLECULE package. The <em>lj/charmm/coul/long</em>
style is part of the KSPACE package. They are only enabled if LAMMPS
was built with those packages. See the <a class="reference internal" href="Section_start.html#start-3"><span class="std std-ref">Making LAMMPS</span></a> section for more info. Note that
the MOLECULE and KSPACE packages are installed by default.</p>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.