<p>where <em>E<sub>tot</sub></em> is the total potential energy of the system,
<em>E<sub>ES</sub></em> is the electrostatic part of the total energy,
<em>E<sub>OO</sub></em> is the interaction between oxygens and
<em>E<sub>MO</sub></em> is a short-range interaction between metal and oxygen
atoms. This interactions depend on interatomic distance
<em>r<sub>ij</sub></em> and/or the charge <em>Q<sub>i</sub></em> of atoms
<em>i</em>. Cut-off function enables smooth convergence to zero interaction.</p>
<p>The parameters appearing in the upper expressions are set in the
ffield.SMTBQ.Syst file where Syst corresponds to the selected system
(e.g. field.SMTBQ.Al2O3). Exemples for TiO<sub>2</sub>,
Al<sub>2</sub>O<sub>3</sub> are provided. A single pair_coeff command
is used with the SMTBQ styles which provides the path to the potential
file with parameters for needed elements. These are mapped to LAMMPS
atom types by specifying additional arguments after the potential
filename in the pair_coeff command. Note that atom type 1 must always
correspond to oxygen atoms. As an example, to simulate a TiO2 system,
atom type 1 has to be oxygen and atom type 2 Ti. The following
pair_coeff command should then be used:</p>
<pre class="literal-block">
pair_coeff * * PathToLammps/potentials/ffield.smtbq.TiO2 O Ti
</pre>
<p>The electrostatic part of the energy consists of two components</p>
<p>self-energy of atom <em>i</em> in the form of a second order charge dependent
polynomial and a long-range Coulombic electrostatic interaction. The
latter uses the wolf summation method described in <a class="reference internal" href="#wolf"><span class="std std-ref">Wolf</span></a>,
spherically truncated at a longer cutoff, <em>R<sub>coul</sub></em>. The
charge of each ion is modeled by an orbital Slater which depends on
the principal quantum number (<em>n</em>) of the outer orbital shared by the
ion.</p>
<p>Interaction between oxygen, <em>E<sub>OO</sub></em>, consists of two parts,
an attractive and a repulsive part. The attractive part is effective
only at short range (< r<sub>2</sub><sup>OO</sup>). The attractive
contribution was optimized to study surfaces reconstruction
(e.g. <a class="reference internal" href="#smtb-q-2"><span class="std std-ref">SMTB-Q_2</span></a> in TiO<sub>2</sub>) and is not necessary
for oxide bulk modeling. The repulsive part is the Pauli interaction
between the electron clouds of oxygen. The Pauli repulsion and the
coulombic electrostatic interaction have same cut off value. In the
ffield.SMTBQ.Syst, the keyword <em>‘buck’</em> allows to consider only the
repulsive O-O interactions. The keyword <em>‘buckPlusAttr’</em> allows to
consider the repulsive and the attractive O-O interactions.</p>
<p>The short-range interaction between metal-oxygen, <em>E<sub>MO</sub></em> is
based on the second moment approximation of the density of states with
a N-body potential for the band energy term,
<em>E<sup>i</sup><sub>cov</sub></em>, and a Born-Mayer type repulsive terms
as indicated by the keyword <em>‘second_moment’</em> in the
ffield.SMTBQ.Syst. The energy band term is given by:</p>
<p>Thus parameter &#956, indicated above, is given by : &#956 = (&#8730n
+ &#8730m) &#8260 2</p>
<p>The potential offers the possibility to consider the polarizability of
the electron clouds of oxygen by changing the slater radius of the
charge density around the oxygens through the parameters <em>rBB, rB and
rS</em> in the ffield.SMTBQ.Syst. This change in radius is performed
according to the method developed by E. Maras
<a class="reference internal" href="#smtb-q-2"><span class="std std-ref">SMTB-Q_2</span></a>. This method needs to determine the number of
nearest neighbors around the oxygen. This calculation is based on
first (<em>r<sub>1n</sub></em>) and second (<em>r<sub>2n</sub></em>) distances
neighbors.</p>
<p>The SMTB-Q potential is a variable charge potential. The equilibrium
charge on each atom is calculated by the electronegativity
equalization (QEq) method. See <a class="reference internal" href="#rick"><span class="std std-ref">Rick</span></a> for further detail. One
can adjust the frequency, the maximum number of iterative loop and the
convergence of the equilibrium charge calculation. To obtain the
energy conservation in NVE thermodynamic ensemble, we recommend to use
a convergence parameter in the interval 10<sup>-5</sup> -
10<sup>-6</sup> eV.</p>
<p>The ffield.SMTBQ.Syst files are provided for few systems. They consist
of nine parts and the lines beginning with ‘#’ are comments (note that
the number of comment lines matter). The first sections are on the
potential parameters and others are on the simulation options and
might be modified. Keywords are character type and must be enclosed in
quotation marks (‘’).</p>
<ol class="arabic simple">
<li>Number of different element in the oxide:</li>
</ol>
<ul class="simple">
<li>N<sub>elem</sub>= 2 or 3</li>
<li>Divided line</li>
</ul>
<ol class="arabic simple" start="2">
<li>Atomic parameters</li>
</ol>
<p>For the anion (oxygen)</p>
<ul class="simple">
<li>Name of element (char) and stoichiometry in oxide</li>
<li>Formal charge and mass of element</li>
<li>Principal quantic number of outer orbital (<em>n</em>), electronegativity (<em>&#967<sup>0</sup><sub>i</simulationub></em>) and hardness (<em>J<sup>0</sup><sub>i</sub></em>)</li>
<li>Ionic radius parameters : max coordination number (<em>coordBB</em> = 6 by default), bulk coordination number <em>(coordB)</em>, surface coordination number <em>(coordS)</em> and <em>rBB, rB and rS</em> the slater radius for each coordination number. (<b>note : If you don’t want to change the slater radius, use three identical radius values</b>)</li>
<li>Number of orbital shared by the element in the oxide (<em>d<sub>i</sub></em>)</li>
<li>Divided line</li>
</ul>
<p>For each cations (metal):</p>
<ul class="simple">
<li>Name of element (char) and stoichiometry in oxide</li>
<li>Formal charge and mass of element</li>
<li>Number of electron in outer orbital <em>(ne)</em>, electronegativity (<em>&#967<sup>0</sup><sub>i</simulationub></em>), hardness (<em>J<sup>0</sup><sub>i</sub></em>) and <em>r<sub>Salter</sub></em> the slater radius for the cation.</li>
<li>Number of orbitals shared by the elements in the oxide (<em>d<sub>i</sub></em>)</li>
<li>Divided line</li>
</ul>
<ol class="arabic simple" start="3">
<li>Potential parameters:</li>
</ol>
<ul class="simple">
<li>Keyword for element1, element2 and interaction potential (‘second_moment’ or ‘buck’ or ‘buckPlusAttr’) between element 1 and 2. If the potential is ‘second_moment’, specify ‘oxide’ or ‘metal’ for metal-oxygen or metal-metal interactions respectively.</li>
<li>Potential parameter: <pre><br/> If type of potential is ‘second_moment’ : <em>A (eV)</em>, <em>p</em>, <em>&#958<sup>0</sup></em> (eV) and <em>q</em> <br/> <em>r<sub>c1</sub></em> (&#197), <em>r<sub>c2</sub></em> (&#197) and <em>r<sub>0</sub></em> (&#197) <br/> If type of potential is ‘buck’ : <em>C</em> (eV) and <em>&#961</em> (&#197) <br/> If type of potential is ‘buckPlusAttr’ : <em>C</em> (eV) and <em>&#961</em> (&#197) <br/> <em>D</em> (eV), <em>B</em> (&#197<sup>-1</sup>), <em>r<sub>1</sub><sup>OO</sup></em> (&#197) and <em>r<sub>2</sub><sup>OO</sup></em> (&#197) </pre></li>
<li>Divided line</li>
</ul>
<ol class="arabic simple" start="4">
<li>Tables parameters:</li>
</ol>
<ul class="simple">
<li>Cutoff radius for the Coulomb interaction (<em>R<sub>coul</sub></em>)</li>
<li>Starting radius (<em>r<sub>min</sub></em> = 1,18845 &#197) and increments (<em>dr</em> = 0,001 &#197) for creating the potential table.</li>
<li>Divided line</li>
</ul>
<ol class="arabic simple" start="5">
<li>Rick model parameter:</li>
</ol>
<ul class="simple">
<li><em>Nevery</em> : parameter to set the frequency (<em>1/Nevery</em>) of the charge resolution. The charges are evaluated each <em>Nevery</em> time steps.</li>
<li>Max number of iterative loop (<em>loopmax</em>) and precision criterion (<em>prec</em>) in eV of the charge resolution</li>
<li>Divided line</li>
</ul>
<ol class="arabic simple" start="6">
<li>Coordination parameter:</li>
</ol>
<ul class="simple">
<li>First (<em>r<sub>1n</sub></em>) and second (<em>r<sub>2n</sub></em>) neighbor distances in &#197</li>
<li>Divided line</li>
</ul>
<ol class="arabic simple" start="7">
<li>Charge initialization mode:</li>
</ol>
<ul class="simple">
<li>Keyword (<em>QInitMode</em>) and initial oxygen charge (<em>Q<sub>init</sub></em>). If keyword = ‘true’, all oxygen charges are initially set equal to <em>Q<sub>init</sub></em>. The charges on the cations are initially set in order to respect the neutrality of the box. If keyword = ‘false’, all atom charges are initially set equal to 0 if you use “create_atom”#create_atom command or the charge specified in the file structure using <a class="reference internal" href="read_data.html"><span class="doc">read_data</span></a> command.</li>
<li>Divided line</li>
</ul>
<ol class="arabic simple" start="8">
<li>Mode for the electronegativity equalization (Qeq)</li>
</ol>
<ul class="simple">
<li>Keyword mode: <pre> <br/> QEqAll (one QEq group) | no parameters <br/> QEqAllParallel (several QEq groups) | no parameters <br/> Surface | zlim (QEq only for z>zlim) </pre></li>
<li>Parameter if necessary</li>
<li>Divided line</li>
</ul>
<ol class="arabic simple" start="9">
<li>Verbose</li>
</ol>
<ul class="simple">
<li>If you want the code to work in verbose mode or not : ‘true’ or ‘false’</li>
<li>If you want to print or not in file ‘Energy_component.txt’ the three main contributions to the energy of the system according to the description presented above : ‘true’ or ‘false’ and <em>N<sub>Energy</sub></em>. This option writes in file every <em>N<sub>Energy</sub></em> time step. If the value is ‘false’ then <em>N<sub>Energy</sub></em> = 0. The file take into account the possibility to have several QEq group <em>g</em> then it writes: time step, number of atoms in group <em>g</em>, electrostatic part of energy, <em>E<sub>ES</sub></em>, the interaction between oxygen, <em>E<sub>OO</sub></em>, and short range metal-oxygen interaction, <em>E<sub>MO</sub></em>.</li>
<li>If you want to print in file ‘Electroneg_component.txt’ the electronegativity component (<em>&#8706E<sub>tot</sub> &#8260&#8706Q<sub>i</sub></em>) or not: ‘true’ or ‘false’ and <em>N<sub>Electroneg</sub></em>.This option writes in file every <em>N<sub>Electroneg</sub></em> time step. If the value is ‘false’ then <em>N<sub>Electroneg</sub></em> = 0. The file consist in atom number <em>i</em>, atom type (1 for oxygen and # higher than 1 for metal), atom position: <em>x</em>, <em>y</em> and <em>z</em>, atomic charge of atom <em>i</em>, electrostatic part of atom <em>i</em> electronegativity, covalent part of atom <em>i</em> electronegativity, the hopping integral of atom <em>i</em> <em>(Z&#946<sup>2</sup>)<sub>i<sub></em> and box electronegativity.</li>
</ul>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p class="last">This last option slows down the calculation dramatically. Use
<p>This pair style does not support the <a class="reference internal" href="pair_modify.html"><span class="doc">pair_modify</span></a>
mix, shift, table, and tail options.</p>
<p>This pair style does not write its information to <a class="reference internal" href="restart.html"><span class="doc">binary restart files</span></a>, since it is stored in potential files. Thus, you
needs to re-specify the pair_style and pair_coeff commands in an input
script that reads a restart file.</p>
<p>This pair style can only be used via the <em>pair</em> keyword of the
<a class="reference internal" href="run_style.html"><span class="doc">run_style respa</span></a> command. It does not support the
<p>This pair style is part of the USER-SMTBQ package and is only enabled
if LAMMPS is built with that package. See the <a class="reference internal" href="Section_start.html#start-3"><span class="std std-ref">Making LAMMPS</span></a> section for more info.</p>
<p>This potential requires using atom type 1 for oxygen and atom type
higher than 1 for metal atoms.</p>
<p>This pair style requires the <a class="reference internal" href="newton.html"><span class="doc">newton</span></a> setting to be “on”
for pair interactions.</p>
<p>The SMTB-Q potential files provided with LAMMPS (see the potentials
directory) are parameterized for metal <a class="reference internal" href="units.html"><span class="doc">units</span></a>.</p>
<hr class="docutils" />
<p><strong>Citing this work:</strong></p>
<p>Please cite related publication: N. Salles, O. Politano, E. Amzallag
and R. Tetot, Comput. Mater. Sci. 111 (2016) 181-189</p>
<hr class="docutils" />
<p id="smtb-q-1"><strong>(SMTB-Q_1)</strong> N. Salles, O. Politano, E. Amzallag, R. Tetot,
Comput. Mater. Sci. 111 (2016) 181-189</p>
<p id="smtb-q-2"><strong>(SMTB-Q_2)</strong> E. Maras, N. Salles, R. Tetot, T. Ala-Nissila,
H. Jonsson, J. Phys. Chem. C 2015, 119, 10391-10399</p>
<p id="smtb-q-3"><strong>(SMTB-Q_3)</strong> R. Tetot, N. Salles, S. Landron, E. Amzallag, Surface
Science 616, 19-8722 28 (2013)</p>
<p id="wolf"><strong>(Wolf)</strong> D. Wolf, P. Keblinski, S. R. Phillpot, J. Eggebrecht, J Chem
Phys, 110, 8254 (1999).</p>
<p id="rick"><strong>(Rick)</strong> S. W. Rick, S. J. Stuart, B. J. Berne, J Chem Phys 101, 6141
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.