Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91067943
CG.h
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Nov 7, 13:05
Size
2 KB
Mime Type
text/x-c++
Expires
Sat, Nov 9, 13:05 (2 d)
Engine
blob
Format
Raw Data
Handle
22189767
Attached To
rLAMMPS lammps
CG.h
View Options
//*****************************************************************
// Iterative template routine -- CG
//
// CG solves the symmetric positive definite linear
// system Ax=b using the Conjugate Gradient method.
//
// CG follows the algorithm described on p. 15 in the
// SIAM Templates book.
//
// The return value indicates convergence within max_iter (input)
// iterations (0), or no convergence within max_iter iterations (1).
//
// Upon successful return, output arguments have the following values:
//
// x -- approximate solution to Ax = b
// max_iter -- the number of iterations performed before the
// tolerance was reached
// tol -- the residual after the final iteration
//
//*****************************************************************
/**
* @class CG
* @brief Base class for solving the linear system Ax=b using the Conjugate Gradient method
*/
template < class Matrix, class Vector, class DataVector, class Preconditioner, class Real >
int
CG(const Matrix &A, Vector &x, const DataVector &b, const Preconditioner &M, int &max_iter, Real &tol) {
Real resid;
DenseVector<Real> p, z, q;
Real alpha, beta, rho, rho_1(0);
DenseVector<Real> tmp;
tmp.reset(b.size());
p.reset(b.size());
z.reset(b.size());
q.reset(b.size());
Real normb = b.norm();
DenseVector<Real> r;
tmp = A*x;
r = b - tmp;
// Implicit assumption that only diagonal matrices are being used for preconditioning
Preconditioner Minv = M.inv();
if (normb == 0.0)
normb = 1;
if ((resid = r.norm() / normb) <= tol) {
tol = resid;
max_iter = 0;
return 0;
}
for (int i = 0; i < max_iter; i++) {
z = Minv*r;
rho = r.dot(z);
if (i == 0)
p = z;
else {
beta = rho / rho_1;
tmp = p*beta;
p = z + tmp;
}
q = A*p;
alpha = rho / p.dot(q);
x += p*alpha;
r -= q*alpha;
if ((resid = r.norm() / normb) <= tol)
{
tol = resid;
max_iter = i+1;
return 0;
}
rho_1 = rho;
}
tol = resid;
return 1;
}
Event Timeline
Log In to Comment