Page MenuHomec4science

gb_gpu_memory.h
No OneTemporary

File Metadata

Created
Thu, Nov 7, 08:17

gb_gpu_memory.h

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing authors: Mike Brown (ORNL), brownw@ornl.gov
------------------------------------------------------------------------- */
#ifndef GB_GPU_MEMORY_H
#define GB_GPU_MEMORY_H
#include "pair_gpu_device.h"
#include "pair_gpu_balance.h"
#include "mpi.h"
template <class numtyp, class acctyp>
class GB_GPU_Memory {
public:
GB_GPU_Memory();
~GB_GPU_Memory();
/// Clear any previous data and set up for a new LAMMPS run
/** \param gpu_nbor true if neighboring performed on device
* \param max_nbors initial number of rows in the neighbor matrix
* \param cell_size cutoff + skin
* \param gpu_split fraction of particles handled by device
* \return false if there is not sufficient memory or device init prob
*
* Returns:
* - 0 if successfull
* - -1 if fix gpu not found
* - -3 if there is an out of memory error
* - -4 if the GPU library was not compiled for GPU
* - -5 Double precision is not supported on card **/
int init(const int ntypes, const double gamma,
const double upsilon, const double mu, double **host_shape,
double **host_well, double **host_cutsq, double **host_sigma,
double **host_epsilon, double *host_lshape, int **h_form,
double **host_lj1, double **host_lj2, double **host_lj3,
double **host_lj4, double **host_offset,
const double *host_special_lj, const int nlocal, const int nall,
const int max_nbors, const double cell_size,
const double gpu_split, FILE *screen);
/// Estimate the overhead for GPU context changes and CPU driver
void estimate_gpu_overhead();
/// Check if there is enough storage for atom arrays and realloc if not
/** \param success set to false if insufficient memory **/
inline void resize_atom(const int inum, const int nall, bool &success) {
atom->resize(nall, success);
ans->resize(inum, success);
if (multiple_forms) ans->dev_ans.zero();
double bytes=ans->gpu_bytes()+nbor->gpu_bytes();
if (bytes>_max_bytes)
_max_bytes=bytes;
}
/// Check if there is enough storage for neighbors and realloc if not
/** \param nlocal number of particles whose nbors must be stored on device
* \param host_inum number of particles whose nbors need to copied to host
* \param current maximum number of neighbors
* \param olist_size size of list of particles from CPU neighboring
* \note host_inum is 0 if the host is performing neighboring
* \note if GPU is neighboring nlocal+host_inum=total number local particles
* \note if CPU is neighboring olist_size=total number of local particles
* \note if GPU is neighboring olist_size=0 **/
inline void resize_local(const int nlocal, const int host_inum,
const int max_nbors, const int olist_size,
bool &success) {
if (olist_size>static_cast<int>(host_olist.numel())) {
host_olist.clear();
int new_size=static_cast<int>(static_cast<double>(olist_size)*1.10);
success=success && (host_olist.alloc(new_size,*ucl_device)==UCL_SUCCESS);
}
nbor->resize(nlocal,host_inum,max_nbors,success);
double bytes=ans->gpu_bytes()+nbor->gpu_bytes();
if (bytes>_max_bytes)
_max_bytes=bytes;
}
/// Clear all host and device data
/** \note This is called at the beginning of the init() routine **/
void clear();
/// Returns memory usage on device per atom
int bytes_per_atom(const int max_nbors) const;
/// Total host memory used by library for pair style
double host_memory_usage() const;
/// Accumulate timers
inline void acc_timers() {
if (device->time_device()) {
if (nbor_time_avail) {
nbor->time_nbor.add_to_total();
nbor->time_kernel.add_to_total();
nbor_time_avail=false;
}
time_kernel.add_to_total();
time_gayberne.add_to_total();
if (multiple_forms) {
time_kernel2.add_to_total();
time_gayberne2.add_to_total();
time_pair.add_to_total();
}
atom->acc_timers();
ans->acc_timers();
}
}
/// Accumulate timers
inline void zero_timers() {
nbor_time_avail=false;
time_kernel.zero();
time_gayberne.zero();
if (multiple_forms) {
time_kernel2.zero();
time_gayberne2.zero();
time_pair.zero();
}
atom->zero_timers();
ans->zero_timers();
}
// -------------------------- DEVICE DATA -------------------------
/// Device Properties and Atom and Neighbor storage
PairGPUDevice<numtyp,acctyp> *device;
/// Geryon device
UCL_Device *ucl_device;
/// Device Error Flag - Set if a bad matrix inversion occurs
UCL_D_Vec<int> dev_error;
/// Device timers
UCL_Timer time_kernel, time_gayberne, time_kernel2, time_gayberne2, time_pair;
/// Host device load balancer
PairGPUBalance<numtyp,acctyp> hd_balancer;
/// LAMMPS pointer for screen output
FILE *screen;
// --------------------------- TYPE DATA --------------------------
/// lj1.x = lj1, lj1.y = lj2, lj1.z = cutsq, lj1.w = form
UCL_D_Vec<numtyp4> lj1;
/// lj3.x = lj3, lj3.y = lj4, lj3.z = offset
UCL_D_Vec<numtyp4> lj3;
/// sigma_epsilon.x = sigma, sigma_epsilon.y = epsilon
UCL_D_Vec<numtyp2> sigma_epsilon;
/// cut_form.x = cutsq, cut_form.y = form
UCL_D_Vec<numtyp2> cut_form;
// 0 - gamma, 1-upsilon, 2-mu, 3-special_lj[0], 4-special_lj[1], ...
UCL_D_Vec<numtyp> gamma_upsilon_mu;
// True if we want to use fast GB-sphere or sphere-sphere calculations
bool multiple_forms;
int **host_form;
/// If atom type constants fit in shared memory, use fast kernels
bool shared_types;
int _lj_types;
// --------------------------- ATOM DATA --------------------------
/// Atom Data
PairGPUAtom<numtyp,acctyp> *atom;
/// Aspherical Const Data for Atoms
UCL_D_Vec<numtyp4> shape, well;
/// Aspherical Const Data for Atoms
UCL_D_Vec<numtyp> lshape;
int last_ellipse, max_last_ellipse;
// ------------------------ FORCE/ENERGY DATA -----------------------
PairGPUAns<numtyp,acctyp> *ans;
// --------------------------- NBOR DATA ----------------------------
/// Neighbor data
PairGPUNbor *nbor;
/// ilist with particles sorted by type
UCL_H_Vec<int> host_olist;
/// True if we should accumulate the neighbor timer
bool nbor_time_avail;
// ------------------------- DEVICE KERNELS -------------------------
UCL_Program *pair_program, *gb_program, *gb_lj_program;
UCL_Kernel k_gb_nbor_fast, k_gb_nbor;
UCL_Kernel k_gayberne, k_sphere_gb, k_lj_fast, k_lj;
inline int block_size() { return _block_size; }
int _threads_per_atom;
private:
bool _allocated, _compiled;
int _block_size;
double _max_bytes;
double _gpu_overhead, _driver_overhead;
void compile_kernels(UCL_Device &dev);
};
#endif

Event Timeline