Page MenuHomec4science

Implicit.hpp
No OneTemporary

File Metadata

Created
Mon, Dec 2, 14:30

Implicit.hpp

/*
//@HEADER
// ************************************************************************
//
// Kokkos v. 2.0
// Copyright (2014) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact H. Carter Edwards (hcedwar@sandia.gov)
//
// ************************************************************************
//@HEADER
*/
#ifndef HYBRIDFEM_IMPLICIT_HPP
#define HYBRIDFEM_IMPLICIT_HPP
#include <utility>
#include <iostream>
#include <iomanip>
#include <Kokkos_Core.hpp>
#include <SparseLinearSystem.hpp>
#include <SparseLinearSystemFill.hpp>
#include <ImplicitFunctors.hpp>
#include <FEMesh.hpp>
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
namespace HybridFEM {
namespace Implicit {
struct PerformanceData {
double mesh_time ;
double graph_time ;
double elem_time ;
double matrix_gather_fill_time ;
double matrix_boundary_condition_time ;
double cg_iteration_time ;
PerformanceData()
: mesh_time(0)
, graph_time(0)
, elem_time(0)
, matrix_gather_fill_time(0)
, matrix_boundary_condition_time(0)
, cg_iteration_time(0)
{}
void best( const PerformanceData & rhs )
{
mesh_time = std::min( mesh_time , rhs.mesh_time );
graph_time = std::min( graph_time , rhs.graph_time );
elem_time = std::min( elem_time , rhs.elem_time );
matrix_gather_fill_time = std::min( matrix_gather_fill_time , rhs.matrix_gather_fill_time );
matrix_boundary_condition_time = std::min( matrix_boundary_condition_time , rhs.matrix_boundary_condition_time );
cg_iteration_time = std::min( cg_iteration_time , rhs.cg_iteration_time );
}
};
//----------------------------------------------------------------------------
template< typename Scalar , class FixtureType >
PerformanceData run( const typename FixtureType::FEMeshType & mesh ,
const int , // global_max_x ,
const int , // global_max_y ,
const int global_max_z ,
const bool print_sample )
{
typedef Scalar scalar_type ;
typedef FixtureType fixture_type ;
typedef typename fixture_type::execution_space execution_space;
//typedef typename execution_space::size_type size_type ; // unused
typedef typename fixture_type::FEMeshType mesh_type ;
typedef typename fixture_type::coordinate_scalar_type coordinate_scalar_type ;
enum { ElementNodeCount = fixture_type::element_node_count };
const comm::Machine machine = mesh.parallel_data_map.machine ;
const size_t element_count = mesh.elem_node_ids.dimension_0();
const size_t iteration_limit = 200 ;
const double residual_tolerance = 1e-14 ;
size_t iteration_count = 0 ;
double residual_norm = 0 ;
PerformanceData perf_data ;
//------------------------------------
// Sparse linear system types:
typedef Kokkos::View< scalar_type* , execution_space > vector_type ;
typedef Kokkos::CrsMatrix< scalar_type , execution_space > matrix_type ;
typedef typename matrix_type::graph_type matrix_graph_type ;
typedef typename matrix_type::coefficients_type matrix_coefficients_type ;
typedef GraphFactory< matrix_graph_type , mesh_type > graph_factory ;
//------------------------------------
// Problem setup types:
typedef ElementComputation< scalar_type , scalar_type , execution_space > ElementFunctor ;
typedef DirichletBoundary< scalar_type , scalar_type , execution_space > BoundaryFunctor ;
typedef typename ElementFunctor::elem_matrices_type elem_matrices_type ;
typedef typename ElementFunctor::elem_vectors_type elem_vectors_type ;
typedef GatherFill< matrix_type ,
mesh_type ,
elem_matrices_type ,
elem_vectors_type > GatherFillFunctor ;
//------------------------------------
const scalar_type elem_coeff_K = 2 ;
const scalar_type elem_load_Q = 1 ;
matrix_type linsys_matrix ;
vector_type linsys_rhs ;
vector_type linsys_solution ;
typename graph_factory::element_map_type element_map ;
Kokkos::Timer wall_clock ;
//------------------------------------
// Generate sparse matrix graph and element->graph map.
graph_factory::create( mesh , linsys_matrix.graph , element_map );
execution_space::fence();
perf_data.graph_time = comm::max( machine , wall_clock.seconds() );
//------------------------------------
// Allocate linear system coefficients and rhs:
const size_t local_owned_length =
linsys_matrix.graph.row_map.dimension_0() - 1 ;
linsys_matrix.coefficients =
matrix_coefficients_type( "coeff" , linsys_matrix.graph.entries.dimension_0() );
linsys_rhs = vector_type( "rhs" , local_owned_length );
linsys_solution = vector_type( "solution" , local_owned_length );
//------------------------------------
// Fill linear system
{
elem_matrices_type elem_matrices ;
elem_vectors_type elem_vectors ;
if ( element_count ) {
elem_matrices = elem_matrices_type( std::string("elem_matrices"), element_count );
elem_vectors = elem_vectors_type ( std::string("elem_vectors"), element_count );
}
//------------------------------------
// Compute element matrices and vectors:
wall_clock.reset();
ElementFunctor::apply( mesh ,
elem_matrices , elem_vectors ,
elem_coeff_K , elem_load_Q );
execution_space::fence();
perf_data.elem_time = comm::max( machine , wall_clock.seconds() );
//------------------------------------
// Fill linear system coefficients:
wall_clock.reset();
GatherFillFunctor::apply( linsys_matrix , linsys_rhs ,
mesh , element_map , elem_matrices , elem_vectors );
execution_space::fence();
perf_data.matrix_gather_fill_time = comm::max( machine , wall_clock.seconds() );
// Apply boundary conditions:
wall_clock.reset();
BoundaryFunctor::apply( linsys_matrix , linsys_rhs , mesh ,
0 , global_max_z , 0 , global_max_z );
execution_space::fence();
perf_data.matrix_boundary_condition_time = comm::max( machine , wall_clock.seconds() );
}
//------------------------------------
// Solve linear sytem
cgsolve( mesh.parallel_data_map ,
linsys_matrix , linsys_rhs , linsys_solution ,
iteration_count , residual_norm ,
perf_data.cg_iteration_time ,
iteration_limit , residual_tolerance );
//------------------------------------
if ( print_sample ) {
typename mesh_type::node_coords_type::HostMirror coords_h =
Kokkos::create_mirror( mesh.node_coords );
typename vector_type::HostMirror X_h =
Kokkos::create_mirror( linsys_solution );
Kokkos::deep_copy( coords_h , mesh.node_coords );
Kokkos::deep_copy( X_h , linsys_solution );
for ( size_t i = 0 ; i < mesh.parallel_data_map.count_owned ; ++i ) {
const coordinate_scalar_type x = coords_h(i,0);
const coordinate_scalar_type y = coords_h(i,1);
const coordinate_scalar_type z = coords_h(i,2);
if ( x <= 0 && y <= 0 ) {
std::cout << " node( " << x << " " << y << " " << z << " ) = "
<< X_h(i) << std::endl ;
}
}
}
return perf_data ;
}
//----------------------------------------------------------------------------
template< typename Scalar , class Device >
void driver( const char * const label ,
comm::Machine machine ,
const int gang_count ,
const int elem_count_beg ,
const int elem_count_end ,
const int runs )
{
typedef Scalar scalar_type ;
typedef Device execution_space ;
typedef double coordinate_scalar_type ;
typedef FixtureElementHex8 fixture_element_type ;
typedef BoxMeshFixture< coordinate_scalar_type ,
execution_space ,
fixture_element_type > fixture_type ;
typedef typename fixture_type::FEMeshType mesh_type ;
const size_t proc_count = comm::size( machine );
const size_t proc_rank = comm::rank( machine );
if ( elem_count_beg == 0 || elem_count_end == 0 || runs == 0 ) return ;
if ( comm::rank( machine ) == 0 ) {
std::cout << std::endl ;
std::cout << "\"Kokkos::HybridFE::Implicit " << label << "\"" << std::endl;
std::cout << "\"Size\" , \"Graphing\" , \"Element\" , \"Fill\" , \"Boundary\" , \"CG-Iter\"" << std::endl
<< "\"elems\" , \"millisec\" , \"millisec\" , \"millisec\" , \"millisec\" , \"millisec\"" << std::endl ;
}
for(int i = elem_count_beg ; i < elem_count_end ; i *= 2 )
{
const int ix = std::max( 1 , (int) cbrt( ((double) i) / 2.0 ) );
const int iy = ix + 1 ;
const int iz = 2 * iy ;
const int n = ix * iy * iz ;
mesh_type mesh =
fixture_type::create( proc_count , proc_rank , gang_count ,
ix , iy , iz );
mesh.parallel_data_map.machine = machine ;
PerformanceData perf_data , perf_best ;
for(int j = 0; j < runs; j++){
perf_data = run<scalar_type,fixture_type>(mesh,ix,iy,iz, false );
if( j == 0 ) {
perf_best = perf_data ;
}
else {
perf_best.best( perf_data );
}
}
if ( comm::rank( machine ) == 0 ) {
std::cout << std::setw(8) << n << " , "
<< std::setw(10) << perf_best.graph_time * 1000 << " , "
<< std::setw(10) << perf_best.elem_time * 1000 << " , "
<< std::setw(10) << perf_best.matrix_gather_fill_time * 1000 << " , "
<< std::setw(10) << perf_best.matrix_boundary_condition_time * 1000 << " , "
<< std::setw(10) << perf_best.cg_iteration_time * 1000
<< std::endl ;
}
}
}
//----------------------------------------------------------------------------
} /* namespace Implicit */
} /* namespace HybridFEM */
#endif /* #ifndef HYBRIDFEM_IMPLICIT_HPP */

Event Timeline