Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90393360
AngleAxis.h
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Nov 1, 06:49
Size
7 KB
Mime Type
text/x-c++
Expires
Sun, Nov 3, 06:49 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22065761
Attached To
rLAMMPS lammps
AngleAxis.h
View Options
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ANGLEAXIS_H
#define EIGEN_ANGLEAXIS_H
namespace
Eigen
{
/** \geometry_module \ingroup Geometry_Module
*
* \class AngleAxis
*
* \brief Represents a 3D rotation as a rotation angle around an arbitrary 3D axis
*
* \param _Scalar the scalar type, i.e., the type of the coefficients.
*
* \warning When setting up an AngleAxis object, the axis vector \b must \b be \b normalized.
*
* The following two typedefs are provided for convenience:
* \li \c AngleAxisf for \c float
* \li \c AngleAxisd for \c double
*
* Combined with MatrixBase::Unit{X,Y,Z}, AngleAxis can be used to easily
* mimic Euler-angles. Here is an example:
* \include AngleAxis_mimic_euler.cpp
* Output: \verbinclude AngleAxis_mimic_euler.out
*
* \note This class is not aimed to be used to store a rotation transformation,
* but rather to make easier the creation of other rotation (Quaternion, rotation Matrix)
* and transformation objects.
*
* \sa class Quaternion, class Transform, MatrixBase::UnitX()
*/
namespace
internal
{
template
<
typename
_Scalar
>
struct
traits
<
AngleAxis
<
_Scalar
>
>
{
typedef
_Scalar
Scalar
;
};
}
template
<
typename
_Scalar
>
class
AngleAxis
:
public
RotationBase
<
AngleAxis
<
_Scalar
>
,
3
>
{
typedef
RotationBase
<
AngleAxis
<
_Scalar
>
,
3
>
Base
;
public:
using
Base
::
operator
*
;
enum
{
Dim
=
3
};
/** the scalar type of the coefficients */
typedef
_Scalar
Scalar
;
typedef
Matrix
<
Scalar
,
3
,
3
>
Matrix3
;
typedef
Matrix
<
Scalar
,
3
,
1
>
Vector3
;
typedef
Quaternion
<
Scalar
>
QuaternionType
;
protected:
Vector3
m_axis
;
Scalar
m_angle
;
public:
/** Default constructor without initialization. */
AngleAxis
()
{}
/** Constructs and initialize the angle-axis rotation from an \a angle in radian
* and an \a axis which \b must \b be \b normalized.
*
* \warning If the \a axis vector is not normalized, then the angle-axis object
* represents an invalid rotation. */
template
<
typename
Derived
>
inline
AngleAxis
(
const
Scalar
&
angle
,
const
MatrixBase
<
Derived
>&
axis
)
:
m_axis
(
axis
),
m_angle
(
angle
)
{}
/** Constructs and initialize the angle-axis rotation from a quaternion \a q. */
template
<
typename
QuatDerived
>
inline
explicit
AngleAxis
(
const
QuaternionBase
<
QuatDerived
>&
q
)
{
*
this
=
q
;
}
/** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */
template
<
typename
Derived
>
inline
explicit
AngleAxis
(
const
MatrixBase
<
Derived
>&
m
)
{
*
this
=
m
;
}
/** \returns the value of the rotation angle in radian */
Scalar
angle
()
const
{
return
m_angle
;
}
/** \returns a read-write reference to the stored angle in radian */
Scalar
&
angle
()
{
return
m_angle
;
}
/** \returns the rotation axis */
const
Vector3
&
axis
()
const
{
return
m_axis
;
}
/** \returns a read-write reference to the stored rotation axis.
*
* \warning The rotation axis must remain a \b unit vector.
*/
Vector3
&
axis
()
{
return
m_axis
;
}
/** Concatenates two rotations */
inline
QuaternionType
operator
*
(
const
AngleAxis
&
other
)
const
{
return
QuaternionType
(
*
this
)
*
QuaternionType
(
other
);
}
/** Concatenates two rotations */
inline
QuaternionType
operator
*
(
const
QuaternionType
&
other
)
const
{
return
QuaternionType
(
*
this
)
*
other
;
}
/** Concatenates two rotations */
friend
inline
QuaternionType
operator
*
(
const
QuaternionType
&
a
,
const
AngleAxis
&
b
)
{
return
a
*
QuaternionType
(
b
);
}
/** \returns the inverse rotation, i.e., an angle-axis with opposite rotation angle */
AngleAxis
inverse
()
const
{
return
AngleAxis
(
-
m_angle
,
m_axis
);
}
template
<
class
QuatDerived
>
AngleAxis
&
operator
=
(
const
QuaternionBase
<
QuatDerived
>&
q
);
template
<
typename
Derived
>
AngleAxis
&
operator
=
(
const
MatrixBase
<
Derived
>&
m
);
template
<
typename
Derived
>
AngleAxis
&
fromRotationMatrix
(
const
MatrixBase
<
Derived
>&
m
);
Matrix3
toRotationMatrix
(
void
)
const
;
/** \returns \c *this with scalar type casted to \a NewScalarType
*
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
* then this function smartly returns a const reference to \c *this.
*/
template
<
typename
NewScalarType
>
inline
typename
internal
::
cast_return_type
<
AngleAxis
,
AngleAxis
<
NewScalarType
>
>::
type
cast
()
const
{
return
typename
internal
::
cast_return_type
<
AngleAxis
,
AngleAxis
<
NewScalarType
>
>::
type
(
*
this
);
}
/** Copy constructor with scalar type conversion */
template
<
typename
OtherScalarType
>
inline
explicit
AngleAxis
(
const
AngleAxis
<
OtherScalarType
>&
other
)
{
m_axis
=
other
.
axis
().
template
cast
<
Scalar
>
();
m_angle
=
Scalar
(
other
.
angle
());
}
static
inline
const
AngleAxis
Identity
()
{
return
AngleAxis
(
Scalar
(
0
),
Vector3
::
UnitX
());
}
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
bool
isApprox
(
const
AngleAxis
&
other
,
const
typename
NumTraits
<
Scalar
>::
Real
&
prec
=
NumTraits
<
Scalar
>::
dummy_precision
())
const
{
return
m_axis
.
isApprox
(
other
.
m_axis
,
prec
)
&&
internal
::
isApprox
(
m_angle
,
other
.
m_angle
,
prec
);
}
};
/** \ingroup Geometry_Module
* single precision angle-axis type */
typedef
AngleAxis
<
float
>
AngleAxisf
;
/** \ingroup Geometry_Module
* double precision angle-axis type */
typedef
AngleAxis
<
double
>
AngleAxisd
;
/** Set \c *this from a \b unit quaternion.
* The axis is normalized.
*
* \warning As any other method dealing with quaternion, if the input quaternion
* is not normalized then the result is undefined.
*/
template
<
typename
Scalar
>
template
<
typename
QuatDerived
>
AngleAxis
<
Scalar
>&
AngleAxis
<
Scalar
>::
operator
=
(
const
QuaternionBase
<
QuatDerived
>&
q
)
{
using
std
::
acos
;
using
std
::
min
;
using
std
::
max
;
using
std
::
sqrt
;
Scalar
n2
=
q
.
vec
().
squaredNorm
();
if
(
n2
<
NumTraits
<
Scalar
>::
dummy_precision
()
*
NumTraits
<
Scalar
>::
dummy_precision
())
{
m_angle
=
Scalar
(
0
);
m_axis
<<
Scalar
(
1
),
Scalar
(
0
),
Scalar
(
0
);
}
else
{
m_angle
=
Scalar
(
2
)
*
acos
((
min
)((
max
)(
Scalar
(
-
1
),
q
.
w
()),
Scalar
(
1
)));
m_axis
=
q
.
vec
()
/
sqrt
(
n2
);
}
return
*
this
;
}
/** Set \c *this from a 3x3 rotation matrix \a mat.
*/
template
<
typename
Scalar
>
template
<
typename
Derived
>
AngleAxis
<
Scalar
>&
AngleAxis
<
Scalar
>::
operator
=
(
const
MatrixBase
<
Derived
>&
mat
)
{
// Since a direct conversion would not be really faster,
// let's use the robust Quaternion implementation:
return
*
this
=
QuaternionType
(
mat
);
}
/**
* \brief Sets \c *this from a 3x3 rotation matrix.
**/
template
<
typename
Scalar
>
template
<
typename
Derived
>
AngleAxis
<
Scalar
>&
AngleAxis
<
Scalar
>::
fromRotationMatrix
(
const
MatrixBase
<
Derived
>&
mat
)
{
return
*
this
=
QuaternionType
(
mat
);
}
/** Constructs and \returns an equivalent 3x3 rotation matrix.
*/
template
<
typename
Scalar
>
typename
AngleAxis
<
Scalar
>::
Matrix3
AngleAxis
<
Scalar
>::
toRotationMatrix
(
void
)
const
{
using
std
::
sin
;
using
std
::
cos
;
Matrix3
res
;
Vector3
sin_axis
=
sin
(
m_angle
)
*
m_axis
;
Scalar
c
=
cos
(
m_angle
);
Vector3
cos1_axis
=
(
Scalar
(
1
)
-
c
)
*
m_axis
;
Scalar
tmp
;
tmp
=
cos1_axis
.
x
()
*
m_axis
.
y
();
res
.
coeffRef
(
0
,
1
)
=
tmp
-
sin_axis
.
z
();
res
.
coeffRef
(
1
,
0
)
=
tmp
+
sin_axis
.
z
();
tmp
=
cos1_axis
.
x
()
*
m_axis
.
z
();
res
.
coeffRef
(
0
,
2
)
=
tmp
+
sin_axis
.
y
();
res
.
coeffRef
(
2
,
0
)
=
tmp
-
sin_axis
.
y
();
tmp
=
cos1_axis
.
y
()
*
m_axis
.
z
();
res
.
coeffRef
(
1
,
2
)
=
tmp
-
sin_axis
.
x
();
res
.
coeffRef
(
2
,
1
)
=
tmp
+
sin_axis
.
x
();
res
.
diagonal
()
=
(
cos1_axis
.
cwiseProduct
(
m_axis
)).
array
()
+
c
;
return
res
;
}
}
// end namespace Eigen
#endif
// EIGEN_ANGLEAXIS_H
Event Timeline
Log In to Comment