Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91338127
pair_gw.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sun, Nov 10, 03:22
Size
22 KB
Mime Type
text/x-c
Expires
Tue, Nov 12, 03:22 (2 d)
Engine
blob
Format
Raw Data
Handle
22245220
Attached To
rLAMMPS lammps
pair_gw.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: German Samolyuk (ORNL)
based on PairTersoff by Aidan Thompson (SNL)
------------------------------------------------------------------------- */
#include "math.h"
#include "stdio.h"
#include "stdlib.h"
#include "string.h"
#include "pair_gw.h"
#include "atom.h"
#include "neighbor.h"
#include "neigh_list.h"
#include "neigh_request.h"
#include "force.h"
#include "comm.h"
#include "memory.h"
#include "error.h"
#include "math_const.h"
using
namespace
LAMMPS_NS
;
using
namespace
MathConst
;
#define MAXLINE 1024
#define DELTA 4
/* ---------------------------------------------------------------------- */
PairGW
::
PairGW
(
LAMMPS
*
lmp
)
:
Pair
(
lmp
)
{
single_enable
=
0
;
restartinfo
=
0
;
one_coeff
=
1
;
manybody_flag
=
1
;
nelements
=
0
;
elements
=
NULL
;
nparams
=
maxparam
=
0
;
params
=
NULL
;
elem2param
=
NULL
;
map
=
NULL
;
}
/* ----------------------------------------------------------------------
check if allocated, since class can be destructed when incomplete
------------------------------------------------------------------------- */
PairGW
::~
PairGW
()
{
if
(
elements
)
for
(
int
i
=
0
;
i
<
nelements
;
i
++
)
delete
[]
elements
[
i
];
delete
[]
elements
;
memory
->
destroy
(
params
);
memory
->
destroy
(
elem2param
);
if
(
allocated
)
{
memory
->
destroy
(
setflag
);
memory
->
destroy
(
cutsq
);
delete
[]
map
;
}
}
/* ---------------------------------------------------------------------- */
void
PairGW
::
compute
(
int
eflag
,
int
vflag
)
{
int
i
,
j
,
k
,
ii
,
jj
,
kk
,
inum
,
jnum
;
int
itag
,
jtag
,
itype
,
jtype
,
ktype
,
iparam_ij
,
iparam_ijk
;
double
xtmp
,
ytmp
,
ztmp
,
delx
,
dely
,
delz
,
evdwl
,
fpair
;
double
rsq
,
rsq1
,
rsq2
;
double
delr1
[
3
],
delr2
[
3
],
fi
[
3
],
fj
[
3
],
fk
[
3
];
double
zeta_ij
,
prefactor
;
int
*
ilist
,
*
jlist
,
*
numneigh
,
**
firstneigh
;
evdwl
=
0.0
;
if
(
eflag
||
vflag
)
ev_setup
(
eflag
,
vflag
);
else
evflag
=
vflag_fdotr
=
vflag_atom
=
0
;
double
**
x
=
atom
->
x
;
double
**
f
=
atom
->
f
;
tagint
*
tag
=
atom
->
tag
;
int
*
type
=
atom
->
type
;
int
nlocal
=
atom
->
nlocal
;
int
newton_pair
=
force
->
newton_pair
;
inum
=
list
->
inum
;
ilist
=
list
->
ilist
;
numneigh
=
list
->
numneigh
;
firstneigh
=
list
->
firstneigh
;
// loop over full neighbor list of my atoms
for
(
ii
=
0
;
ii
<
inum
;
ii
++
)
{
i
=
ilist
[
ii
];
itag
=
tag
[
i
];
itype
=
map
[
type
[
i
]];
xtmp
=
x
[
i
][
0
];
ytmp
=
x
[
i
][
1
];
ztmp
=
x
[
i
][
2
];
// two-body interactions, skip half of them
jlist
=
firstneigh
[
i
];
jnum
=
numneigh
[
i
];
for
(
jj
=
0
;
jj
<
jnum
;
jj
++
)
{
j
=
jlist
[
jj
];
j
&=
NEIGHMASK
;
jtag
=
tag
[
j
];
if
(
itag
>
jtag
)
{
if
((
itag
+
jtag
)
%
2
==
0
)
continue
;
}
else
if
(
itag
<
jtag
)
{
if
((
itag
+
jtag
)
%
2
==
1
)
continue
;
}
else
{
if
(
x
[
j
][
2
]
<
x
[
i
][
2
])
continue
;
if
(
x
[
j
][
2
]
==
ztmp
&&
x
[
j
][
1
]
<
ytmp
)
continue
;
if
(
x
[
j
][
2
]
==
ztmp
&&
x
[
j
][
1
]
==
ytmp
&&
x
[
j
][
0
]
<
xtmp
)
continue
;
}
jtype
=
map
[
type
[
j
]];
delx
=
xtmp
-
x
[
j
][
0
];
dely
=
ytmp
-
x
[
j
][
1
];
delz
=
ztmp
-
x
[
j
][
2
];
rsq
=
delx
*
delx
+
dely
*
dely
+
delz
*
delz
;
iparam_ij
=
elem2param
[
itype
][
jtype
][
jtype
];
if
(
rsq
>
params
[
iparam_ij
].
cutsq
)
continue
;
repulsive
(
&
params
[
iparam_ij
],
rsq
,
fpair
,
eflag
,
evdwl
);
f
[
i
][
0
]
+=
delx
*
fpair
;
f
[
i
][
1
]
+=
dely
*
fpair
;
f
[
i
][
2
]
+=
delz
*
fpair
;
f
[
j
][
0
]
-=
delx
*
fpair
;
f
[
j
][
1
]
-=
dely
*
fpair
;
f
[
j
][
2
]
-=
delz
*
fpair
;
if
(
evflag
)
ev_tally
(
i
,
j
,
nlocal
,
newton_pair
,
evdwl
,
0.0
,
fpair
,
delx
,
dely
,
delz
);
}
// three-body interactions
// skip immediately if I-J is not within cutoff
for
(
jj
=
0
;
jj
<
jnum
;
jj
++
)
{
j
=
jlist
[
jj
];
j
&=
NEIGHMASK
;
jtype
=
map
[
type
[
j
]];
iparam_ij
=
elem2param
[
itype
][
jtype
][
jtype
];
delr1
[
0
]
=
x
[
j
][
0
]
-
xtmp
;
delr1
[
1
]
=
x
[
j
][
1
]
-
ytmp
;
delr1
[
2
]
=
x
[
j
][
2
]
-
ztmp
;
rsq1
=
delr1
[
0
]
*
delr1
[
0
]
+
delr1
[
1
]
*
delr1
[
1
]
+
delr1
[
2
]
*
delr1
[
2
];
if
(
rsq1
>
params
[
iparam_ij
].
cutsq
)
continue
;
// accumulate bondorder zeta for each i-j interaction via loop over k
zeta_ij
=
1.0
;
for
(
kk
=
0
;
kk
<
jnum
;
kk
++
)
{
if
(
jj
==
kk
)
continue
;
k
=
jlist
[
kk
];
k
&=
NEIGHMASK
;
ktype
=
map
[
type
[
k
]];
iparam_ijk
=
elem2param
[
itype
][
jtype
][
ktype
];
delr2
[
0
]
=
x
[
k
][
0
]
-
xtmp
;
delr2
[
1
]
=
x
[
k
][
1
]
-
ytmp
;
delr2
[
2
]
=
x
[
k
][
2
]
-
ztmp
;
rsq2
=
delr2
[
0
]
*
delr2
[
0
]
+
delr2
[
1
]
*
delr2
[
1
]
+
delr2
[
2
]
*
delr2
[
2
];
if
(
rsq2
>
params
[
iparam_ijk
].
cutsq
)
continue
;
zeta_ij
+=
zeta
(
&
params
[
iparam_ijk
],
rsq1
,
rsq2
,
delr1
,
delr2
);
}
// pairwise force due to zeta
force_zeta
(
&
params
[
iparam_ij
],
rsq1
,
zeta_ij
,
fpair
,
prefactor
,
eflag
,
evdwl
);
f
[
i
][
0
]
+=
delr1
[
0
]
*
fpair
;
f
[
i
][
1
]
+=
delr1
[
1
]
*
fpair
;
f
[
i
][
2
]
+=
delr1
[
2
]
*
fpair
;
f
[
j
][
0
]
-=
delr1
[
0
]
*
fpair
;
f
[
j
][
1
]
-=
delr1
[
1
]
*
fpair
;
f
[
j
][
2
]
-=
delr1
[
2
]
*
fpair
;
if
(
evflag
)
ev_tally
(
i
,
j
,
nlocal
,
newton_pair
,
evdwl
,
0.0
,
-
fpair
,
-
delr1
[
0
],
-
delr1
[
1
],
-
delr1
[
2
]);
// attractive term via loop over k
for
(
kk
=
0
;
kk
<
jnum
;
kk
++
)
{
if
(
jj
==
kk
)
continue
;
k
=
jlist
[
kk
];
k
&=
NEIGHMASK
;
ktype
=
map
[
type
[
k
]];
iparam_ijk
=
elem2param
[
itype
][
jtype
][
ktype
];
delr2
[
0
]
=
x
[
k
][
0
]
-
xtmp
;
delr2
[
1
]
=
x
[
k
][
1
]
-
ytmp
;
delr2
[
2
]
=
x
[
k
][
2
]
-
ztmp
;
rsq2
=
delr2
[
0
]
*
delr2
[
0
]
+
delr2
[
1
]
*
delr2
[
1
]
+
delr2
[
2
]
*
delr2
[
2
];
if
(
rsq2
>
params
[
iparam_ijk
].
cutsq
)
continue
;
attractive
(
&
params
[
iparam_ijk
],
prefactor
,
rsq1
,
rsq2
,
delr1
,
delr2
,
fi
,
fj
,
fk
);
f
[
i
][
0
]
+=
fi
[
0
];
f
[
i
][
1
]
+=
fi
[
1
];
f
[
i
][
2
]
+=
fi
[
2
];
f
[
j
][
0
]
+=
fj
[
0
];
f
[
j
][
1
]
+=
fj
[
1
];
f
[
j
][
2
]
+=
fj
[
2
];
f
[
k
][
0
]
+=
fk
[
0
];
f
[
k
][
1
]
+=
fk
[
1
];
f
[
k
][
2
]
+=
fk
[
2
];
if
(
vflag_atom
)
v_tally3
(
i
,
j
,
k
,
fj
,
fk
,
delr1
,
delr2
);
}
// kk
}
// jj
}
// ii
if
(
vflag_fdotr
)
virial_fdotr_compute
();
}
/* ---------------------------------------------------------------------- */
void
PairGW
::
allocate
()
{
allocated
=
1
;
int
n
=
atom
->
ntypes
;
memory
->
create
(
setflag
,
n
+
1
,
n
+
1
,
"pair:setflag"
);
memory
->
create
(
cutsq
,
n
+
1
,
n
+
1
,
"pair:cutsq"
);
map
=
new
int
[
n
+
1
];
}
/* ----------------------------------------------------------------------
global settings
------------------------------------------------------------------------- */
void
PairGW
::
settings
(
int
narg
,
char
**
arg
)
{
if
(
narg
!=
0
)
error
->
all
(
FLERR
,
"Illegal pair_style command"
);
}
/* ----------------------------------------------------------------------
set coeffs for one or more type pairs
------------------------------------------------------------------------- */
void
PairGW
::
coeff
(
int
narg
,
char
**
arg
)
{
int
i
,
j
,
n
;
if
(
!
allocated
)
allocate
();
if
(
narg
!=
3
+
atom
->
ntypes
)
error
->
all
(
FLERR
,
"Incorrect args for pair coefficients"
);
// insure I,J args are * *
if
(
strcmp
(
arg
[
0
],
"*"
)
!=
0
||
strcmp
(
arg
[
1
],
"*"
)
!=
0
)
error
->
all
(
FLERR
,
"Incorrect args for pair coefficients"
);
// read args that map atom types to elements in potential file
// map[i] = which element the Ith atom type is, -1 if NULL
// nelements = # of unique elements
// elements = list of element names
if
(
elements
)
{
for
(
i
=
0
;
i
<
nelements
;
i
++
)
delete
[]
elements
[
i
];
delete
[]
elements
;
}
elements
=
new
char
*
[
atom
->
ntypes
];
for
(
i
=
0
;
i
<
atom
->
ntypes
;
i
++
)
elements
[
i
]
=
NULL
;
nelements
=
0
;
for
(
i
=
3
;
i
<
narg
;
i
++
)
{
if
(
strcmp
(
arg
[
i
],
"NULL"
)
==
0
)
{
map
[
i
-
2
]
=
-
1
;
continue
;
}
for
(
j
=
0
;
j
<
nelements
;
j
++
)
if
(
strcmp
(
arg
[
i
],
elements
[
j
])
==
0
)
break
;
map
[
i
-
2
]
=
j
;
if
(
j
==
nelements
)
{
n
=
strlen
(
arg
[
i
])
+
1
;
elements
[
j
]
=
new
char
[
n
];
strcpy
(
elements
[
j
],
arg
[
i
]);
nelements
++
;
}
}
// read potential file and initialize potential parameters
read_file
(
arg
[
2
]);
setup_params
();
// clear setflag since coeff() called once with I,J = * *
n
=
atom
->
ntypes
;
for
(
i
=
1
;
i
<=
n
;
i
++
)
for
(
j
=
i
;
j
<=
n
;
j
++
)
setflag
[
i
][
j
]
=
0
;
// set setflag i,j for type pairs where both are mapped to elements
int
count
=
0
;
for
(
i
=
1
;
i
<=
n
;
i
++
)
for
(
j
=
i
;
j
<=
n
;
j
++
)
if
(
map
[
i
]
>=
0
&&
map
[
j
]
>=
0
)
{
setflag
[
i
][
j
]
=
1
;
count
++
;
}
if
(
count
==
0
)
error
->
all
(
FLERR
,
"Incorrect args for pair coefficients"
);
}
/* ----------------------------------------------------------------------
init specific to this pair style
------------------------------------------------------------------------- */
void
PairGW
::
init_style
()
{
if
(
atom
->
tag_enable
==
0
)
error
->
all
(
FLERR
,
"Pair style GW requires atom IDs"
);
if
(
force
->
newton_pair
==
0
)
error
->
all
(
FLERR
,
"Pair style GW requires newton pair on"
);
// need a full neighbor list
int
irequest
=
neighbor
->
request
(
this
,
instance_me
);
neighbor
->
requests
[
irequest
]
->
half
=
0
;
neighbor
->
requests
[
irequest
]
->
full
=
1
;
}
/* ----------------------------------------------------------------------
init for one type pair i,j and corresponding j,i
------------------------------------------------------------------------- */
double
PairGW
::
init_one
(
int
i
,
int
j
)
{
if
(
setflag
[
i
][
j
]
==
0
)
error
->
all
(
FLERR
,
"All pair coeffs are not set"
);
return
cutmax
;
}
/* ---------------------------------------------------------------------- */
void
PairGW
::
read_file
(
char
*
file
)
{
int
params_per_line
=
17
;
char
**
words
=
new
char
*
[
params_per_line
+
1
];
memory
->
sfree
(
params
);
params
=
NULL
;
nparams
=
maxparam
=
0
;
// open file on proc 0
FILE
*
fp
;
if
(
comm
->
me
==
0
)
{
fp
=
force
->
open_potential
(
file
);
if
(
fp
==
NULL
)
{
char
str
[
128
];
sprintf
(
str
,
"Cannot open GW potential file %s"
,
file
);
error
->
one
(
FLERR
,
str
);
}
}
// read each line out of file, skipping blank lines or leading '#'
// store line of params if all 3 element tags are in element list
int
n
,
nwords
,
ielement
,
jelement
,
kelement
;
char
line
[
MAXLINE
],
*
ptr
;
int
eof
=
0
;
while
(
1
)
{
if
(
comm
->
me
==
0
)
{
ptr
=
fgets
(
line
,
MAXLINE
,
fp
);
if
(
ptr
==
NULL
)
{
eof
=
1
;
fclose
(
fp
);
}
else
n
=
strlen
(
line
)
+
1
;
}
MPI_Bcast
(
&
eof
,
1
,
MPI_INT
,
0
,
world
);
if
(
eof
)
break
;
MPI_Bcast
(
&
n
,
1
,
MPI_INT
,
0
,
world
);
MPI_Bcast
(
line
,
n
,
MPI_CHAR
,
0
,
world
);
// strip comment, skip line if blank
if
((
ptr
=
strchr
(
line
,
'#'
)))
*
ptr
=
'\0'
;
nwords
=
atom
->
count_words
(
line
);
if
(
nwords
==
0
)
continue
;
// concatenate additional lines until have params_per_line words
while
(
nwords
<
params_per_line
)
{
n
=
strlen
(
line
);
if
(
comm
->
me
==
0
)
{
ptr
=
fgets
(
&
line
[
n
],
MAXLINE
-
n
,
fp
);
if
(
ptr
==
NULL
)
{
eof
=
1
;
fclose
(
fp
);
}
else
n
=
strlen
(
line
)
+
1
;
}
MPI_Bcast
(
&
eof
,
1
,
MPI_INT
,
0
,
world
);
if
(
eof
)
break
;
MPI_Bcast
(
&
n
,
1
,
MPI_INT
,
0
,
world
);
MPI_Bcast
(
line
,
n
,
MPI_CHAR
,
0
,
world
);
if
((
ptr
=
strchr
(
line
,
'#'
)))
*
ptr
=
'\0'
;
nwords
=
atom
->
count_words
(
line
);
}
if
(
nwords
!=
params_per_line
)
error
->
all
(
FLERR
,
"Incorrect format in GW potential file"
);
// words = ptrs to all words in line
nwords
=
0
;
words
[
nwords
++
]
=
strtok
(
line
,
"
\t\n\r\f
"
);
while
((
words
[
nwords
++
]
=
strtok
(
NULL
,
"
\t\n\r\f
"
)))
continue
;
// ielement,jelement,kelement = 1st args
// if all 3 args are in element list, then parse this line
// else skip to next line
for
(
ielement
=
0
;
ielement
<
nelements
;
ielement
++
)
if
(
strcmp
(
words
[
0
],
elements
[
ielement
])
==
0
)
break
;
if
(
ielement
==
nelements
)
continue
;
for
(
jelement
=
0
;
jelement
<
nelements
;
jelement
++
)
if
(
strcmp
(
words
[
1
],
elements
[
jelement
])
==
0
)
break
;
if
(
jelement
==
nelements
)
continue
;
for
(
kelement
=
0
;
kelement
<
nelements
;
kelement
++
)
if
(
strcmp
(
words
[
2
],
elements
[
kelement
])
==
0
)
break
;
if
(
kelement
==
nelements
)
continue
;
// load up parameter settings and error check their values
if
(
nparams
==
maxparam
)
{
maxparam
+=
DELTA
;
params
=
(
Param
*
)
memory
->
srealloc
(
params
,
maxparam
*
sizeof
(
Param
),
"pair:params"
);
}
params
[
nparams
].
ielement
=
ielement
;
params
[
nparams
].
jelement
=
jelement
;
params
[
nparams
].
kelement
=
kelement
;
params
[
nparams
].
powerm
=
atof
(
words
[
3
]);
params
[
nparams
].
gamma
=
atof
(
words
[
4
]);
params
[
nparams
].
lam3
=
atof
(
words
[
5
]);
params
[
nparams
].
c
=
atof
(
words
[
6
]);
params
[
nparams
].
d
=
atof
(
words
[
7
]);
params
[
nparams
].
h
=
atof
(
words
[
8
]);
params
[
nparams
].
powern
=
atof
(
words
[
9
]);
params
[
nparams
].
beta
=
atof
(
words
[
10
]);
params
[
nparams
].
lam2
=
atof
(
words
[
11
]);
params
[
nparams
].
bigb
=
atof
(
words
[
12
]);
params
[
nparams
].
bigr
=
atof
(
words
[
13
]);
params
[
nparams
].
bigd
=
atof
(
words
[
14
]);
params
[
nparams
].
lam1
=
atof
(
words
[
15
]);
params
[
nparams
].
biga
=
atof
(
words
[
16
]);
// currently only allow m exponent of 1 or 3
params
[
nparams
].
powermint
=
int
(
params
[
nparams
].
powerm
);
if
(
params
[
nparams
].
c
<
0.0
||
params
[
nparams
].
d
<
0.0
||
params
[
nparams
].
powern
<
0.0
||
params
[
nparams
].
beta
<
0.0
||
params
[
nparams
].
lam2
<
0.0
||
params
[
nparams
].
bigb
<
0.0
||
params
[
nparams
].
bigr
<
0.0
||
params
[
nparams
].
bigd
<
0.0
||
params
[
nparams
].
bigd
>
params
[
nparams
].
bigr
||
params
[
nparams
].
lam1
<
0.0
||
params
[
nparams
].
biga
<
0.0
||
params
[
nparams
].
powerm
-
params
[
nparams
].
powermint
!=
0.0
||
(
params
[
nparams
].
powermint
!=
3
&&
params
[
nparams
].
powermint
!=
1
)
||
params
[
nparams
].
gamma
<
0.0
)
error
->
all
(
FLERR
,
"Illegal GW parameter"
);
nparams
++
;
}
delete
[]
words
;
}
/* ---------------------------------------------------------------------- */
void
PairGW
::
setup_params
()
{
int
i
,
j
,
k
,
m
,
n
;
// set elem2param for all element triplet combinations
// must be a single exact match to lines read from file
// do not allow for ACB in place of ABC
memory
->
destroy
(
elem2param
);
memory
->
create
(
elem2param
,
nelements
,
nelements
,
nelements
,
"pair:elem2param"
);
for
(
i
=
0
;
i
<
nelements
;
i
++
)
for
(
j
=
0
;
j
<
nelements
;
j
++
)
for
(
k
=
0
;
k
<
nelements
;
k
++
)
{
n
=
-
1
;
for
(
m
=
0
;
m
<
nparams
;
m
++
)
{
if
(
i
==
params
[
m
].
ielement
&&
j
==
params
[
m
].
jelement
&&
k
==
params
[
m
].
kelement
)
{
if
(
n
>=
0
)
error
->
all
(
FLERR
,
"Potential file has duplicate entry"
);
n
=
m
;
}
}
if
(
n
<
0
)
error
->
all
(
FLERR
,
"Potential file is missing an entry"
);
elem2param
[
i
][
j
][
k
]
=
n
;
}
// compute parameter values derived from inputs
for
(
m
=
0
;
m
<
nparams
;
m
++
)
{
params
[
m
].
cut
=
params
[
m
].
bigr
+
params
[
m
].
bigd
;
params
[
m
].
cutsq
=
params
[
m
].
cut
*
params
[
m
].
cut
;
params
[
m
].
c1
=
pow
(
2.0
*
params
[
m
].
powern
*
1.0e-16
,
-
1.0
/
params
[
m
].
powern
);
params
[
m
].
c2
=
pow
(
2.0
*
params
[
m
].
powern
*
1.0e-8
,
-
1.0
/
params
[
m
].
powern
);
params
[
m
].
c3
=
1.0
/
params
[
m
].
c2
;
params
[
m
].
c4
=
1.0
/
params
[
m
].
c1
;
}
// set cutmax to max of all params
cutmax
=
0.0
;
for
(
m
=
0
;
m
<
nparams
;
m
++
)
if
(
params
[
m
].
cut
>
cutmax
)
cutmax
=
params
[
m
].
cut
;
}
/* ---------------------------------------------------------------------- */
void
PairGW
::
repulsive
(
Param
*
param
,
double
rsq
,
double
&
fforce
,
int
eflag
,
double
&
eng
)
{
double
r
,
tmp_fc
,
tmp_fc_d
,
tmp_exp
;
r
=
sqrt
(
rsq
);
tmp_fc
=
gw_fc
(
r
,
param
);
tmp_fc_d
=
gw_fc_d
(
r
,
param
);
tmp_exp
=
exp
(
-
param
->
lam1
*
r
);
fforce
=
-
param
->
biga
*
tmp_exp
*
(
tmp_fc_d
-
tmp_fc
*
param
->
lam1
)
/
r
;
if
(
eflag
)
eng
=
tmp_fc
*
param
->
biga
*
tmp_exp
;
}
/* ---------------------------------------------------------------------- */
double
PairGW
::
zeta
(
Param
*
param
,
double
rsqij
,
double
rsqik
,
double
*
delrij
,
double
*
delrik
)
{
double
rij
,
rik
,
costheta
,
arg
,
ex_delr
;
rij
=
sqrt
(
rsqij
);
rik
=
sqrt
(
rsqik
);
costheta
=
(
delrij
[
0
]
*
delrik
[
0
]
+
delrij
[
1
]
*
delrik
[
1
]
+
delrij
[
2
]
*
delrik
[
2
])
/
(
rij
*
rik
);
if
(
param
->
powermint
==
3
)
arg
=
pow
(
param
->
lam3
*
(
rij
-
rik
),
3.0
);
else
arg
=
param
->
lam3
*
(
rij
-
rik
);
if
(
arg
>
69.0776
)
ex_delr
=
1.e30
;
else
if
(
arg
<
-
69.0776
)
ex_delr
=
0.0
;
else
ex_delr
=
exp
(
arg
);
return
gw_fc
(
rik
,
param
)
*
gw_gijk
(
costheta
,
param
)
*
ex_delr
;
}
/* ---------------------------------------------------------------------- */
void
PairGW
::
force_zeta
(
Param
*
param_i
,
double
rsq
,
double
zeta_ij
,
double
&
fforce
,
double
&
prefactor
,
int
eflag
,
double
&
eng
)
{
double
r
,
fa
,
fa_d
,
bij
;
r
=
sqrt
(
rsq
);
fa
=
gw_fa
(
r
,
param_i
);
fa_d
=
gw_fa_d
(
r
,
param_i
);
bij
=
gw_bij
(
zeta_ij
,
param_i
);
fforce
=
0.5
*
bij
*
fa_d
/
r
;
prefactor
=
-
0.5
*
fa
*
gw_bij_d
(
zeta_ij
,
param_i
);
if
(
eflag
)
eng
=
0.5
*
bij
*
fa
;
}
/* ----------------------------------------------------------------------
attractive term
use param_ij cutoff for rij test
use param_ijk cutoff for rik test
------------------------------------------------------------------------- */
void
PairGW
::
attractive
(
Param
*
param
,
double
prefactor
,
double
rsqij
,
double
rsqik
,
double
*
delrij
,
double
*
delrik
,
double
*
fi
,
double
*
fj
,
double
*
fk
)
{
double
rij_hat
[
3
],
rik_hat
[
3
];
double
rij
,
rijinv
,
rik
,
rikinv
;
rij
=
sqrt
(
rsqij
);
rijinv
=
1.0
/
rij
;
vec3_scale
(
rijinv
,
delrij
,
rij_hat
);
rik
=
sqrt
(
rsqik
);
rikinv
=
1.0
/
rik
;
vec3_scale
(
rikinv
,
delrik
,
rik_hat
);
gw_zetaterm_d
(
prefactor
,
rij_hat
,
rij
,
rik_hat
,
rik
,
fi
,
fj
,
fk
,
param
);
}
/* ---------------------------------------------------------------------- */
double
PairGW
::
gw_fc
(
double
r
,
Param
*
param
)
{
double
gw_R
=
param
->
bigr
;
double
gw_D
=
param
->
bigd
;
if
(
r
<
gw_R
-
gw_D
)
return
1.0
;
if
(
r
>
gw_R
+
gw_D
)
return
0.0
;
return
0.5
*
(
1.0
-
sin
(
MY_PI2
*
(
r
-
gw_R
)
/
gw_D
));
}
/* ---------------------------------------------------------------------- */
double
PairGW
::
gw_fc_d
(
double
r
,
Param
*
param
)
{
double
gw_R
=
param
->
bigr
;
double
gw_D
=
param
->
bigd
;
if
(
r
<
gw_R
-
gw_D
)
return
0.0
;
if
(
r
>
gw_R
+
gw_D
)
return
0.0
;
return
-
(
MY_PI4
/
gw_D
)
*
cos
(
MY_PI2
*
(
r
-
gw_R
)
/
gw_D
);
}
/* ---------------------------------------------------------------------- */
double
PairGW
::
gw_fa
(
double
r
,
Param
*
param
)
{
if
(
r
>
param
->
bigr
+
param
->
bigd
)
return
0.0
;
return
-
param
->
bigb
*
exp
(
-
param
->
lam2
*
r
)
*
gw_fc
(
r
,
param
);
}
/* ---------------------------------------------------------------------- */
double
PairGW
::
gw_fa_d
(
double
r
,
Param
*
param
)
{
if
(
r
>
param
->
bigr
+
param
->
bigd
)
return
0.0
;
return
param
->
bigb
*
exp
(
-
param
->
lam2
*
r
)
*
(
param
->
lam2
*
gw_fc
(
r
,
param
)
-
gw_fc_d
(
r
,
param
));
}
/* ---------------------------------------------------------------------- */
double
PairGW
::
gw_bij
(
double
zeta_ij
,
Param
*
param_i
)
{
double
tmp
=
param_i
->
beta
*
zeta_ij
;
return
pow
(
tmp
,
-
param_i
->
powern
);
}
/* ---------------------------------------------------------------------- */
double
PairGW
::
gw_bij_d
(
double
zeta_ij
,
Param
*
param_i
)
{
double
tmp
=
param_i
->
beta
*
zeta_ij
;
return
-
param_i
->
powern
*
pow
(
tmp
,
-
param_i
->
powern
-
1
)
*
tmp
/
zeta_ij
;
}
/* ---------------------------------------------------------------------- */
void
PairGW
::
gw_zetaterm_d
(
double
prefactor
,
double
*
rij_hat
,
double
rij
,
double
*
rik_hat
,
double
rik
,
double
*
dri
,
double
*
drj
,
double
*
drk
,
Param
*
param
)
{
double
gijk
,
gijk_d
,
ex_delr
,
ex_delr_d
,
fc
,
dfc
,
cos_theta
,
tmp
;
double
dcosdri
[
3
],
dcosdrj
[
3
],
dcosdrk
[
3
];
fc
=
gw_fc
(
rik
,
param
);
dfc
=
gw_fc_d
(
rik
,
param
);
if
(
param
->
powermint
==
3
)
tmp
=
pow
(
param
->
lam3
*
(
rij
-
rik
),
3.0
);
else
tmp
=
param
->
lam3
*
(
rij
-
rik
);
if
(
tmp
>
69.0776
)
ex_delr
=
1.e30
;
else
if
(
tmp
<
-
69.0776
)
ex_delr
=
0.0
;
else
ex_delr
=
exp
(
tmp
);
if
(
param
->
powermint
==
3
)
ex_delr_d
=
3.0
*
pow
(
param
->
lam3
,
3.0
)
*
pow
(
rij
-
rik
,
2.0
)
*
ex_delr
;
else
ex_delr_d
=
param
->
lam3
*
ex_delr
;
cos_theta
=
vec3_dot
(
rij_hat
,
rik_hat
);
gijk
=
gw_gijk
(
cos_theta
,
param
);
gijk_d
=
gw_gijk_d
(
cos_theta
,
param
);
costheta_d
(
rij_hat
,
rij
,
rik_hat
,
rik
,
dcosdri
,
dcosdrj
,
dcosdrk
);
// compute the derivative wrt Ri
// dri = -dfc*gijk*ex_delr*rik_hat;
// dri += fc*gijk_d*ex_delr*dcosdri;
// dri += fc*gijk*ex_delr_d*(rik_hat - rij_hat);
vec3_scale
(
-
dfc
*
gijk
*
ex_delr
,
rik_hat
,
dri
);
vec3_scaleadd
(
fc
*
gijk_d
*
ex_delr
,
dcosdri
,
dri
,
dri
);
vec3_scaleadd
(
fc
*
gijk
*
ex_delr_d
,
rik_hat
,
dri
,
dri
);
vec3_scaleadd
(
-
fc
*
gijk
*
ex_delr_d
,
rij_hat
,
dri
,
dri
);
vec3_scale
(
prefactor
,
dri
,
dri
);
// compute the derivative wrt Rj
// drj = fc*gijk_d*ex_delr*dcosdrj;
// drj += fc*gijk*ex_delr_d*rij_hat;
vec3_scale
(
fc
*
gijk_d
*
ex_delr
,
dcosdrj
,
drj
);
vec3_scaleadd
(
fc
*
gijk
*
ex_delr_d
,
rij_hat
,
drj
,
drj
);
vec3_scale
(
prefactor
,
drj
,
drj
);
// compute the derivative wrt Rk
// drk = dfc*gijk*ex_delr*rik_hat;
// drk += fc*gijk_d*ex_delr*dcosdrk;
// drk += -fc*gijk*ex_delr_d*rik_hat;
vec3_scale
(
dfc
*
gijk
*
ex_delr
,
rik_hat
,
drk
);
vec3_scaleadd
(
fc
*
gijk_d
*
ex_delr
,
dcosdrk
,
drk
,
drk
);
vec3_scaleadd
(
-
fc
*
gijk
*
ex_delr_d
,
rik_hat
,
drk
,
drk
);
vec3_scale
(
prefactor
,
drk
,
drk
);
}
/* ---------------------------------------------------------------------- */
void
PairGW
::
costheta_d
(
double
*
rij_hat
,
double
rij
,
double
*
rik_hat
,
double
rik
,
double
*
dri
,
double
*
drj
,
double
*
drk
)
{
// first element is devative wrt Ri, second wrt Rj, third wrt Rk
double
cos_theta
=
vec3_dot
(
rij_hat
,
rik_hat
);
vec3_scaleadd
(
-
cos_theta
,
rij_hat
,
rik_hat
,
drj
);
vec3_scale
(
1.0
/
rij
,
drj
,
drj
);
vec3_scaleadd
(
-
cos_theta
,
rik_hat
,
rij_hat
,
drk
);
vec3_scale
(
1.0
/
rik
,
drk
,
drk
);
vec3_add
(
drj
,
drk
,
dri
);
vec3_scale
(
-
1.0
,
dri
,
dri
);
}
Event Timeline
Log In to Comment