Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F107068469
pair_eff_cut.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Apr 4, 05:17
Size
29 KB
Mime Type
text/x-c
Expires
Sun, Apr 6, 05:17 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
25344708
Attached To
rLAMMPS lammps
pair_eff_cut.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Andres Jaramillo-Botero
------------------------------------------------------------------------- */
#include "math.h"
#include "stdio.h"
#include "stdlib.h"
#include "string.h"
#include "pair_eff_cut.h"
#include "pair_eff_inline.h"
#include "atom.h"
#include "update.h"
#include "min.h"
#include "domain.h"
#include "comm.h"
#include "force.h"
#include "neighbor.h"
#include "neigh_list.h"
#include "memory.h"
#include "error.h"
using
namespace
LAMMPS_NS
;
#define MIN(a,b) ((a) < (b) ? (a) : (b))
#define MAX(a,b) ((a) > (b) ? (a) : (b))
/* ---------------------------------------------------------------------- */
PairEffCut
::
PairEffCut
(
LAMMPS
*
lmp
)
:
Pair
(
lmp
)
{
single_enable
=
0
;
nmax
=
0
;
min_eradius
=
NULL
;
min_erforce
=
NULL
;
nextra
=
4
;
pvector
=
new
double
[
nextra
];
}
/* ---------------------------------------------------------------------- */
PairEffCut
::~
PairEffCut
()
{
delete
[]
pvector
;
memory
->
destroy
(
min_eradius
);
memory
->
destroy
(
min_erforce
);
if
(
allocated
)
{
memory
->
destroy
(
setflag
);
memory
->
destroy
(
cutsq
);
memory
->
destroy
(
cut
);
}
}
/* ---------------------------------------------------------------------- */
void
PairEffCut
::
compute
(
int
eflag
,
int
vflag
)
{
int
i
,
j
,
ii
,
jj
,
inum
,
jnum
,
itype
,
jtype
;
double
xtmp
,
ytmp
,
ztmp
,
delx
,
dely
,
delz
,
energy
;
double
eke
,
ecoul
,
epauli
,
errestrain
,
halfcoul
,
halfpauli
;
double
fpair
,
fx
,
fy
,
fz
;
double
e1rforce
,
e2rforce
,
e1rvirial
,
e2rvirial
;
double
s_fpair
,
s_e1rforce
,
s_e2rforce
;
double
ecp_epauli
,
ecp_fpair
,
ecp_e1rforce
,
ecp_e2rforce
;
double
rsq
,
rc
;
int
*
ilist
,
*
jlist
,
*
numneigh
,
**
firstneigh
;
energy
=
eke
=
epauli
=
ecoul
=
errestrain
=
0.0
;
// pvector = [KE, Pauli, ecoul, radial_restraint]
for
(
i
=
0
;
i
<
4
;
i
++
)
pvector
[
i
]
=
0.0
;
if
(
eflag
||
vflag
)
ev_setup
(
eflag
,
vflag
);
else
evflag
=
vflag_fdotr
=
0
;
double
**
x
=
atom
->
x
;
double
**
f
=
atom
->
f
;
double
*
q
=
atom
->
q
;
double
*
erforce
=
atom
->
erforce
;
double
*
eradius
=
atom
->
eradius
;
int
*
spin
=
atom
->
spin
;
int
*
type
=
atom
->
type
;
int
nlocal
=
atom
->
nlocal
;
int
newton_pair
=
force
->
newton_pair
;
double
qqrd2e
=
force
->
qqrd2e
;
inum
=
list
->
inum
;
ilist
=
list
->
ilist
;
numneigh
=
list
->
numneigh
;
firstneigh
=
list
->
firstneigh
;
// loop over neighbors of my atoms
for
(
ii
=
0
;
ii
<
inum
;
ii
++
)
{
i
=
ilist
[
ii
];
xtmp
=
x
[
i
][
0
];
ytmp
=
x
[
i
][
1
];
ztmp
=
x
[
i
][
2
];
itype
=
type
[
i
];
jlist
=
firstneigh
[
i
];
jnum
=
numneigh
[
i
];
// add electron wavefuntion kinetic energy (not pairwise)
if
(
abs
(
spin
[
i
])
==
1
||
spin
[
i
]
==
2
)
{
// reset energy and force temp variables
eke
=
epauli
=
ecoul
=
0.0
;
fpair
=
e1rforce
=
e2rforce
=
0.0
;
s_fpair
=
0.0
;
KinElec
(
eradius
[
i
],
&
eke
,
&
e1rforce
);
// Fixed-core
if
(
spin
[
i
]
==
2
)
{
// KE(2s)+Coul(1s-1s)+Coul(2s-nuclei)+Pauli(2s)
eke
*=
2
;
ElecNucElec
(
q
[
i
],
0.0
,
eradius
[
i
],
&
ecoul
,
&
fpair
,
&
e1rforce
);
ElecNucElec
(
q
[
i
],
0.0
,
eradius
[
i
],
&
ecoul
,
&
fpair
,
&
e1rforce
);
ElecElecElec
(
0.0
,
eradius
[
i
],
eradius
[
i
],
&
ecoul
,
&
fpair
,
&
e1rforce
,
&
e2rforce
);
// opposite spin electron interactions
PauliElecElec
(
0
,
0.0
,
eradius
[
i
],
eradius
[
i
],
&
epauli
,
&
s_fpair
,
&
e1rforce
,
&
e2rforce
);
// fix core electron size, i.e. don't contribute to ervirial
e2rforce
=
e1rforce
=
0.0
;
}
// apply unit conversion factors
eke
*=
hhmss2e
;
ecoul
*=
qqrd2e
;
fpair
*=
qqrd2e
;
epauli
*=
hhmss2e
;
s_fpair
*=
hhmss2e
;
e1rforce
*=
hhmss2e
;
// Sum up contributions
energy
=
eke
+
epauli
+
ecoul
;
fpair
=
fpair
+
s_fpair
;
erforce
[
i
]
+=
e1rforce
;
// Tally energy and compute radial atomic virial contribution
if
(
evflag
)
{
ev_tally_eff
(
i
,
i
,
nlocal
,
newton_pair
,
energy
,
0.0
);
if
(
flexible_pressure_flag
)
// iff flexible pressure flag on
ev_tally_eff
(
i
,
i
,
nlocal
,
newton_pair
,
0.0
,
e1rforce
*
eradius
[
i
]);
}
if
(
eflag_global
)
{
pvector
[
0
]
+=
eke
;
pvector
[
1
]
+=
epauli
;
pvector
[
2
]
+=
ecoul
;
}
}
for
(
jj
=
0
;
jj
<
jnum
;
jj
++
)
{
j
=
jlist
[
jj
];
j
&=
NEIGHMASK
;
delx
=
xtmp
-
x
[
j
][
0
];
dely
=
ytmp
-
x
[
j
][
1
];
delz
=
ztmp
-
x
[
j
][
2
];
rsq
=
delx
*
delx
+
dely
*
dely
+
delz
*
delz
;
rc
=
sqrt
(
rsq
);
jtype
=
type
[
j
];
if
(
rsq
<
cutsq
[
itype
][
jtype
])
{
energy
=
ecoul
=
epauli
=
ecp_epauli
=
0.0
;
fx
=
fy
=
fz
=
fpair
=
s_fpair
=
ecp_fpair
=
0.0
;
double
taper
=
sqrt
(
cutsq
[
itype
][
jtype
]);
double
dist
=
rc
/
taper
;
double
spline
=
cutoff
(
dist
);
double
dspline
=
dcutoff
(
dist
)
/
taper
;
// nucleus (i) - nucleus (j) Coul interaction
if
(
spin
[
i
]
==
0
&&
spin
[
j
]
==
0
)
{
double
qxq
=
q
[
i
]
*
q
[
j
];
ElecNucNuc
(
qxq
,
rc
,
&
ecoul
,
&
fpair
);
}
// fixed-core (i) - nucleus (j) nuclear Coul interaction
else
if
(
spin
[
i
]
==
2
&&
spin
[
j
]
==
0
)
{
double
qxq
=
q
[
i
]
*
q
[
j
];
e1rforce
=
0.0
;
ElecNucNuc
(
qxq
,
rc
,
&
ecoul
,
&
fpair
);
ElecNucElec
(
q
[
j
],
rc
,
eradius
[
i
],
&
ecoul
,
&
fpair
,
&
e1rforce
);
ElecNucElec
(
q
[
j
],
rc
,
eradius
[
i
],
&
ecoul
,
&
fpair
,
&
e1rforce
);
}
// nucleus (i) - fixed-core (j) nuclear Coul interaction
else
if
(
spin
[
i
]
==
0
&&
spin
[
j
]
==
2
)
{
double
qxq
=
q
[
i
]
*
q
[
j
];
e1rforce
=
0.0
;
ElecNucNuc
(
qxq
,
rc
,
&
ecoul
,
&
fpair
);
ElecNucElec
(
q
[
i
],
rc
,
eradius
[
j
],
&
ecoul
,
&
fpair
,
&
e1rforce
);
ElecNucElec
(
q
[
i
],
rc
,
eradius
[
j
],
&
ecoul
,
&
fpair
,
&
e1rforce
);
}
// pseudo-core nucleus (i) - nucleus (j) interaction
else
if
(
spin
[
i
]
==
3
&&
spin
[
j
]
==
0
)
{
double
qxq
=
q
[
i
]
*
q
[
j
];
ElecCoreNuc
(
qxq
,
rc
,
eradius
[
i
],
&
ecoul
,
&
fpair
);
}
// nucleus (i) - pseudo-core nucleus (j) interaction
else
if
(
spin
[
i
]
==
0
&&
spin
[
j
]
==
3
)
{
double
qxq
=
q
[
i
]
*
q
[
j
];
ElecCoreNuc
(
qxq
,
rc
,
eradius
[
j
],
&
ecoul
,
&
fpair
);
}
// nucleus (i) - electron (j) Coul interaction
else
if
(
spin
[
i
]
==
0
&&
abs
(
spin
[
j
])
==
1
)
{
e1rforce
=
0.0
;
ElecNucElec
(
q
[
i
],
rc
,
eradius
[
j
],
&
ecoul
,
&
fpair
,
&
e1rforce
);
e1rforce
=
spline
*
qqrd2e
*
e1rforce
;
erforce
[
j
]
+=
e1rforce
;
// Radial electron virial, iff flexible pressure flag set
if
(
evflag
&&
flexible_pressure_flag
)
{
e1rvirial
=
eradius
[
j
]
*
e1rforce
;
ev_tally_eff
(
j
,
j
,
nlocal
,
newton_pair
,
0.0
,
e1rvirial
);
}
}
// electron (i) - nucleus (j) Coul interaction
else
if
(
abs
(
spin
[
i
])
==
1
&&
spin
[
j
]
==
0
)
{
e1rforce
=
0.0
;
ElecNucElec
(
q
[
j
],
rc
,
eradius
[
i
],
&
ecoul
,
&
fpair
,
&
e1rforce
);
e1rforce
=
spline
*
qqrd2e
*
e1rforce
;
erforce
[
i
]
+=
e1rforce
;
// Radial electron virial, iff flexible pressure flag set
if
(
evflag
&&
flexible_pressure_flag
)
{
e1rvirial
=
eradius
[
i
]
*
e1rforce
;
ev_tally_eff
(
i
,
i
,
nlocal
,
newton_pair
,
0.0
,
e1rvirial
);
}
}
// electron (i) - electron (j) interactions
else
if
(
abs
(
spin
[
i
])
==
1
&&
abs
(
spin
[
j
])
==
1
)
{
e1rforce
=
e2rforce
=
0.0
;
s_e1rforce
=
s_e2rforce
=
0.0
;
ElecElecElec
(
rc
,
eradius
[
i
],
eradius
[
j
],
&
ecoul
,
&
fpair
,
&
e1rforce
,
&
e2rforce
);
PauliElecElec
(
spin
[
i
]
==
spin
[
j
],
rc
,
eradius
[
i
],
eradius
[
j
],
&
epauli
,
&
s_fpair
,
&
s_e1rforce
,
&
s_e2rforce
);
// Apply conversion factor
epauli
*=
hhmss2e
;
s_fpair
*=
hhmss2e
;
e1rforce
=
spline
*
(
qqrd2e
*
e1rforce
+
hhmss2e
*
s_e1rforce
);
erforce
[
i
]
+=
e1rforce
;
e2rforce
=
spline
*
(
qqrd2e
*
e2rforce
+
hhmss2e
*
s_e2rforce
);
erforce
[
j
]
+=
e2rforce
;
// Radial electron virial, iff flexible pressure flag set
if
(
evflag
&&
flexible_pressure_flag
)
{
e1rvirial
=
eradius
[
i
]
*
e1rforce
;
e2rvirial
=
eradius
[
j
]
*
e2rforce
;
ev_tally_eff
(
i
,
j
,
nlocal
,
newton_pair
,
0.0
,
e1rvirial
+
e2rvirial
);
}
}
// fixed-core (i) - electron (j) interactions
else
if
(
spin
[
i
]
==
2
&&
abs
(
spin
[
j
])
==
1
)
{
e1rforce
=
e2rforce
=
0.0
;
s_e1rforce
=
s_e2rforce
=
0.0
;
ElecNucElec
(
q
[
i
],
rc
,
eradius
[
j
],
&
ecoul
,
&
fpair
,
&
e2rforce
);
ElecElecElec
(
rc
,
eradius
[
i
],
eradius
[
j
],
&
ecoul
,
&
fpair
,
&
e1rforce
,
&
e2rforce
);
ElecElecElec
(
rc
,
eradius
[
i
],
eradius
[
j
],
&
ecoul
,
&
fpair
,
&
e1rforce
,
&
e2rforce
);
PauliElecElec
(
0
,
rc
,
eradius
[
i
],
eradius
[
j
],
&
epauli
,
&
s_fpair
,
&
s_e1rforce
,
&
s_e2rforce
);
PauliElecElec
(
1
,
rc
,
eradius
[
i
],
eradius
[
j
],
&
epauli
,
&
s_fpair
,
&
s_e1rforce
,
&
s_e2rforce
);
// Apply conversion factor
epauli
*=
hhmss2e
;
s_fpair
*=
hhmss2e
;
// only update virial for j electron
e2rforce
=
spline
*
(
qqrd2e
*
e2rforce
+
hhmss2e
*
s_e2rforce
);
erforce
[
j
]
+=
e2rforce
;
// Radial electron virial, iff flexible pressure flag set
if
(
evflag
&&
flexible_pressure_flag
)
{
e2rvirial
=
eradius
[
j
]
*
e2rforce
;
ev_tally_eff
(
j
,
j
,
nlocal
,
newton_pair
,
0.0
,
e2rvirial
);
}
}
// electron (i) - fixed-core (j) interactions
else
if
(
abs
(
spin
[
i
])
==
1
&&
spin
[
j
]
==
2
)
{
e1rforce
=
e2rforce
=
0.0
;
s_e1rforce
=
s_e2rforce
=
0.0
;
ElecNucElec
(
q
[
j
],
rc
,
eradius
[
i
],
&
ecoul
,
&
fpair
,
&
e2rforce
);
ElecElecElec
(
rc
,
eradius
[
j
],
eradius
[
i
],
&
ecoul
,
&
fpair
,
&
e1rforce
,
&
e2rforce
);
ElecElecElec
(
rc
,
eradius
[
j
],
eradius
[
i
],
&
ecoul
,
&
fpair
,
&
e1rforce
,
&
e2rforce
);
PauliElecElec
(
0
,
rc
,
eradius
[
j
],
eradius
[
i
],
&
epauli
,
&
s_fpair
,
&
s_e1rforce
,
&
s_e2rforce
);
PauliElecElec
(
1
,
rc
,
eradius
[
j
],
eradius
[
i
],
&
epauli
,
&
s_fpair
,
&
s_e1rforce
,
&
s_e2rforce
);
// Apply conversion factor
epauli
*=
hhmss2e
;
s_fpair
*=
hhmss2e
;
// only update virial for i electron
e2rforce
=
spline
*
(
qqrd2e
*
e2rforce
+
hhmss2e
*
s_e2rforce
);
erforce
[
i
]
+=
e2rforce
;
// add radial atomic virial, iff flexible pressure flag set
if
(
evflag
&&
flexible_pressure_flag
)
{
e2rvirial
=
eradius
[
i
]
*
e2rforce
;
ev_tally_eff
(
i
,
i
,
nlocal
,
newton_pair
,
0.0
,
e2rvirial
);
}
}
// fixed-core (i) - fixed-core (j) interactions
else
if
(
spin
[
i
]
==
2
&&
spin
[
j
]
==
2
)
{
e1rforce
=
e2rforce
=
0.0
;
s_e1rforce
=
s_e2rforce
=
0.0
;
double
qxq
=
q
[
i
]
*
q
[
j
];
ElecNucNuc
(
qxq
,
rc
,
&
ecoul
,
&
fpair
);
ElecNucElec
(
q
[
i
],
rc
,
eradius
[
j
],
&
ecoul
,
&
fpair
,
&
e1rforce
);
ElecNucElec
(
q
[
i
],
rc
,
eradius
[
j
],
&
ecoul
,
&
fpair
,
&
e1rforce
);
ElecNucElec
(
q
[
j
],
rc
,
eradius
[
i
],
&
ecoul
,
&
fpair
,
&
e1rforce
);
ElecNucElec
(
q
[
j
],
rc
,
eradius
[
i
],
&
ecoul
,
&
fpair
,
&
e1rforce
);
ElecElecElec
(
rc
,
eradius
[
i
],
eradius
[
j
],
&
ecoul
,
&
fpair
,
&
e1rforce
,
&
e2rforce
);
ElecElecElec
(
rc
,
eradius
[
i
],
eradius
[
j
],
&
ecoul
,
&
fpair
,
&
e1rforce
,
&
e2rforce
);
ElecElecElec
(
rc
,
eradius
[
i
],
eradius
[
j
],
&
ecoul
,
&
fpair
,
&
e1rforce
,
&
e2rforce
);
ElecElecElec
(
rc
,
eradius
[
i
],
eradius
[
j
],
&
ecoul
,
&
fpair
,
&
e1rforce
,
&
e2rforce
);
PauliElecElec
(
0
,
rc
,
eradius
[
i
],
eradius
[
j
],
&
epauli
,
&
s_fpair
,
&
s_e1rforce
,
&
s_e2rforce
);
PauliElecElec
(
1
,
rc
,
eradius
[
i
],
eradius
[
j
],
&
epauli
,
&
s_fpair
,
&
s_e1rforce
,
&
s_e2rforce
);
epauli
*=
2
;
s_fpair
*=
2
;
// Apply conversion factor
epauli
*=
hhmss2e
;
s_fpair
*=
hhmss2e
;
}
// pseudo-core (i) - electron/fixed-core electrons (j) interactions
else
if
(
spin
[
i
]
==
3
&&
(
abs
(
spin
[
j
])
==
1
||
spin
[
j
]
==
2
))
{
e2rforce
=
ecp_e2rforce
=
0.0
;
if
(
abs
(
spin
[
j
])
==
1
)
{
ElecCoreElec
(
q
[
i
],
rc
,
eradius
[
i
],
eradius
[
j
],
&
ecoul
,
&
fpair
,
&
e2rforce
);
PauliCoreElec
(
rc
,
eradius
[
j
],
&
ecp_epauli
,
&
ecp_fpair
,
&
ecp_e2rforce
,
PAULI_CORE_A
,
PAULI_CORE_B
,
PAULI_CORE_C
);
}
else
{
// add second s electron contribution from fixed-core
double
qxq
=
q
[
i
]
*
q
[
j
];
ElecCoreNuc
(
qxq
,
rc
,
eradius
[
j
],
&
ecoul
,
&
fpair
);
ElecCoreElec
(
q
[
i
],
rc
,
eradius
[
i
],
eradius
[
j
],
&
ecoul
,
&
fpair
,
&
e2rforce
);
PauliCoreElec
(
rc
,
eradius
[
j
],
&
ecp_epauli
,
&
ecp_fpair
,
&
ecp_e2rforce
,
PAULI_CORE_A
,
PAULI_CORE_B
,
PAULI_CORE_C
);
}
// Apply conversion factor from Hartree to kcal/mol
ecp_epauli
*=
h2e
;
ecp_fpair
*=
h2e
;
// only update virial for j electron
e2rforce
=
spline
*
(
qqrd2e
*
e2rforce
+
h2e
*
ecp_e2rforce
);
erforce
[
j
]
+=
e2rforce
;
// add radial atomic virial, iff flexible pressure flag set
if
(
evflag
&&
flexible_pressure_flag
)
{
e2rvirial
=
eradius
[
j
]
*
e2rforce
;
ev_tally_eff
(
j
,
j
,
nlocal
,
newton_pair
,
0.0
,
e2rvirial
);
}
}
// electron/fixed-core electrons (i) - pseudo-core (j) interactions
else
if
((
abs
(
spin
[
i
])
==
1
||
spin
[
i
]
==
2
)
&&
spin
[
j
]
==
3
)
{
e1rforce
=
ecp_e1rforce
=
0.0
;
if
(
abs
(
spin
[
j
])
==
1
)
{
ElecCoreElec
(
q
[
j
],
rc
,
eradius
[
j
],
eradius
[
i
],
&
ecoul
,
&
fpair
,
&
e1rforce
);
PauliCoreElec
(
rc
,
eradius
[
i
],
&
ecp_epauli
,
&
ecp_fpair
,
&
ecp_e1rforce
,
PAULI_CORE_A
,
PAULI_CORE_B
,
PAULI_CORE_C
);
}
else
{
double
qxq
=
q
[
i
]
*
q
[
j
];
ElecCoreNuc
(
qxq
,
rc
,
eradius
[
i
],
&
ecoul
,
&
fpair
);
ElecCoreElec
(
q
[
j
],
rc
,
eradius
[
j
],
eradius
[
i
],
&
ecoul
,
&
fpair
,
&
e1rforce
);
PauliCoreElec
(
rc
,
eradius
[
i
],
&
ecp_epauli
,
&
ecp_fpair
,
&
ecp_e1rforce
,
PAULI_CORE_A
,
PAULI_CORE_B
,
PAULI_CORE_C
);
}
// Apply conversion factor from Hartree to kcal/mol
ecp_epauli
*=
h2e
;
ecp_fpair
*=
h2e
;
// only update virial for j electron
e1rforce
=
spline
*
(
qqrd2e
*
e1rforce
+
h2e
*
ecp_e1rforce
);
erforce
[
i
]
+=
e1rforce
;
// add radial atomic virial, iff flexible pressure flag set
if
(
evflag
&&
flexible_pressure_flag
)
{
e1rvirial
=
eradius
[
i
]
*
e1rforce
;
ev_tally_eff
(
i
,
i
,
nlocal
,
newton_pair
,
0.0
,
e1rvirial
);
}
}
// pseudo-core (i) - pseudo-core (j) interactions
else
if
(
spin
[
i
]
==
3
&&
abs
(
spin
[
j
])
==
3
)
{
double
qxq
=
q
[
i
]
*
q
[
j
];
ElecCoreCore
(
qxq
,
rc
,
eradius
[
i
],
eradius
[
j
],
&
ecoul
,
&
fpair
);
}
// Apply Coulomb conversion factor for all cases
ecoul
*=
qqrd2e
;
fpair
*=
qqrd2e
;
// Sum up energy and force contributions
epauli
+=
ecp_epauli
;
energy
=
ecoul
+
epauli
;
fpair
=
fpair
+
s_fpair
+
ecp_fpair
;
// Apply cutoff spline
fpair
=
fpair
*
spline
-
energy
*
dspline
;
energy
=
spline
*
energy
;
// Tally cartesian forces
SmallRForce
(
delx
,
dely
,
delz
,
rc
,
fpair
,
&
fx
,
&
fy
,
&
fz
);
f
[
i
][
0
]
+=
fx
;
f
[
i
][
1
]
+=
fy
;
f
[
i
][
2
]
+=
fz
;
if
(
newton_pair
||
j
<
nlocal
)
{
f
[
j
][
0
]
-=
fx
;
f
[
j
][
1
]
-=
fy
;
f
[
j
][
2
]
-=
fz
;
}
// Tally energy (in ecoul) and compute normal pressure virials
if
(
evflag
)
ev_tally_xyz
(
i
,
j
,
nlocal
,
newton_pair
,
0.0
,
energy
,
fx
,
fy
,
fz
,
delx
,
dely
,
delz
);
if
(
eflag_global
)
{
if
(
newton_pair
)
{
pvector
[
1
]
+=
spline
*
epauli
;
pvector
[
2
]
+=
spline
*
ecoul
;
}
else
{
halfpauli
=
0.5
*
spline
*
epauli
;
halfcoul
=
0.5
*
spline
*
ecoul
;
if
(
i
<
nlocal
)
{
pvector
[
1
]
+=
halfpauli
;
pvector
[
2
]
+=
halfcoul
;
}
if
(
j
<
nlocal
)
{
pvector
[
1
]
+=
halfpauli
;
pvector
[
2
]
+=
halfcoul
;
}
}
}
}
}
// limit electron stifness (size) for periodic systems, to max=half-box-size
if
(
abs
(
spin
[
i
])
==
1
&&
limit_size_flag
)
{
double
half_box_length
=
0
,
dr
,
kfactor
=
hhmss2e
*
1.0
;
e1rforce
=
errestrain
=
0.0
;
if
(
domain
->
xperiodic
==
1
||
domain
->
yperiodic
==
1
||
domain
->
zperiodic
==
1
)
{
delx
=
domain
->
boxhi
[
0
]
-
domain
->
boxlo
[
0
];
dely
=
domain
->
boxhi
[
1
]
-
domain
->
boxlo
[
1
];
delz
=
domain
->
boxhi
[
2
]
-
domain
->
boxlo
[
2
];
half_box_length
=
0.5
*
MIN
(
delx
,
MIN
(
dely
,
delz
));
if
(
eradius
[
i
]
>
half_box_length
)
{
dr
=
eradius
[
i
]
-
half_box_length
;
errestrain
=
0.5
*
kfactor
*
dr
*
dr
;
e1rforce
=-
kfactor
*
dr
;
if
(
eflag_global
)
pvector
[
3
]
+=
errestrain
;
erforce
[
i
]
+=
e1rforce
;
// Tally radial restrain energy and add radial restrain virial
if
(
evflag
)
{
ev_tally_eff
(
i
,
i
,
nlocal
,
newton_pair
,
errestrain
,
0.0
);
if
(
flexible_pressure_flag
)
// flexible electron pressure
ev_tally_eff
(
i
,
i
,
nlocal
,
newton_pair
,
0.0
,
eradius
[
i
]
*
e1rforce
);
}
}
}
}
}
if
(
vflag_fdotr
)
{
virial_compute
();
if
(
flexible_pressure_flag
)
virial_eff_compute
();
}
}
/* ----------------------------------------------------------------------
eff-specific contribution to global virial
------------------------------------------------------------------------- */
void
PairEffCut
::
virial_eff_compute
()
{
double
*
eradius
=
atom
->
eradius
;
double
*
erforce
=
atom
->
erforce
;
double
e_virial
;
int
*
spin
=
atom
->
spin
;
// sum over force on all particles including ghosts
if
(
neighbor
->
includegroup
==
0
)
{
int
nall
=
atom
->
nlocal
+
atom
->
nghost
;
for
(
int
i
=
0
;
i
<
nall
;
i
++
)
{
if
(
spin
[
i
])
{
e_virial
=
erforce
[
i
]
*
eradius
[
i
]
/
3
;
virial
[
0
]
+=
e_virial
;
virial
[
1
]
+=
e_virial
;
virial
[
2
]
+=
e_virial
;
}
}
// neighbor includegroup flag is set
// sum over force on initial nfirst particles and ghosts
}
else
{
int
nall
=
atom
->
nfirst
;
for
(
int
i
=
0
;
i
<
nall
;
i
++
)
{
if
(
spin
[
i
])
{
e_virial
=
erforce
[
i
]
*
eradius
[
i
]
/
3
;
virial
[
0
]
+=
e_virial
;
virial
[
1
]
+=
e_virial
;
virial
[
2
]
+=
e_virial
;
}
}
nall
=
atom
->
nlocal
+
atom
->
nghost
;
for
(
int
i
=
atom
->
nlocal
;
i
<
nall
;
i
++
)
{
if
(
spin
[
i
])
{
e_virial
=
erforce
[
i
]
*
eradius
[
i
]
/
3
;
virial
[
0
]
+=
e_virial
;
virial
[
1
]
+=
e_virial
;
virial
[
2
]
+=
e_virial
;
}
}
}
}
/* ----------------------------------------------------------------------
tally eng_vdwl and virial into per-atom accumulators
for virial radial electronic contributions
------------------------------------------------------------------------- */
void
PairEffCut
::
ev_tally_eff
(
int
i
,
int
j
,
int
nlocal
,
int
newton_pair
,
double
energy
,
double
e_virial
)
{
double
energyhalf
;
double
partial_evirial
=
e_virial
/
3.0
;
double
half_partial_evirial
=
partial_evirial
/
2
;
int
*
spin
=
atom
->
spin
;
if
(
eflag_either
)
{
if
(
eflag_global
)
{
if
(
newton_pair
)
eng_coul
+=
energy
;
else
{
energyhalf
=
0.5
*
energy
;
if
(
i
<
nlocal
)
eng_coul
+=
energyhalf
;
if
(
j
<
nlocal
)
eng_coul
+=
energyhalf
;
}
}
if
(
eflag_atom
)
{
if
(
newton_pair
||
i
<
nlocal
)
eatom
[
i
]
+=
0.5
*
energy
;
if
(
newton_pair
||
j
<
nlocal
)
eatom
[
j
]
+=
0.5
*
energy
;
}
}
if
(
vflag_either
)
{
if
(
vflag_global
)
{
if
(
spin
[
i
]
&&
i
<
nlocal
)
{
virial
[
0
]
+=
half_partial_evirial
;
virial
[
1
]
+=
half_partial_evirial
;
virial
[
2
]
+=
half_partial_evirial
;
}
if
(
spin
[
j
]
&&
j
<
nlocal
)
{
virial
[
0
]
+=
half_partial_evirial
;
virial
[
1
]
+=
half_partial_evirial
;
virial
[
2
]
+=
half_partial_evirial
;
}
}
if
(
vflag_atom
)
{
if
(
spin
[
i
])
{
if
(
newton_pair
||
i
<
nlocal
)
{
vatom
[
i
][
0
]
+=
half_partial_evirial
;
vatom
[
i
][
1
]
+=
half_partial_evirial
;
vatom
[
i
][
2
]
+=
half_partial_evirial
;
}
}
if
(
spin
[
j
])
{
if
(
newton_pair
||
j
<
nlocal
)
{
vatom
[
j
][
0
]
+=
half_partial_evirial
;
vatom
[
j
][
1
]
+=
half_partial_evirial
;
vatom
[
j
][
2
]
+=
half_partial_evirial
;
}
}
}
}
}
/* ----------------------------------------------------------------------
allocate all arrays
------------------------------------------------------------------------- */
void
PairEffCut
::
allocate
()
{
allocated
=
1
;
int
n
=
atom
->
ntypes
;
memory
->
create
(
setflag
,
n
+
1
,
n
+
1
,
"pair:setflag"
);
for
(
int
i
=
1
;
i
<=
n
;
i
++
)
for
(
int
j
=
i
;
j
<=
n
;
j
++
)
setflag
[
i
][
j
]
=
0
;
memory
->
create
(
cutsq
,
n
+
1
,
n
+
1
,
"pair:cutsq"
);
memory
->
create
(
cut
,
n
+
1
,
n
+
1
,
"pair:cut"
);
}
/* ---------------------------------------------------------------------
global settings
------------------------------------------------------------------------- */
void
PairEffCut
::
settings
(
int
narg
,
char
**
arg
)
{
if
(
narg
!=
1
&&
narg
!=
3
&&
narg
!=
4
&&
narg
!=
7
)
error
->
all
(
"Illegal pair_style command"
);
// Defaults ECP parameters for Si
PAULI_CORE_A
=
0.320852
;
PAULI_CORE_B
=
2.283269
;
PAULI_CORE_C
=
0.814857
;
if
(
narg
==
1
)
{
cut_global
=
force
->
numeric
(
arg
[
0
]);
limit_size_flag
=
0
;
flexible_pressure_flag
=
0
;
}
else
if
(
narg
==
3
)
{
cut_global
=
force
->
numeric
(
arg
[
0
]);
limit_size_flag
=
force
->
inumeric
(
arg
[
1
]);
flexible_pressure_flag
=
force
->
inumeric
(
arg
[
2
]);
}
else
if
(
narg
==
4
)
{
cut_global
=
force
->
numeric
(
arg
[
0
]);
limit_size_flag
=
0
;
flexible_pressure_flag
=
0
;
if
(
strcmp
(
arg
[
1
],
"ecp"
)
!=
0
)
error
->
all
(
"Illegal pair_style command"
);
else
{
PAULI_CORE_A
=
force
->
numeric
(
arg
[
2
]);
PAULI_CORE_B
=
force
->
numeric
(
arg
[
3
]);
PAULI_CORE_C
=
force
->
numeric
(
arg
[
4
]);
}
}
else
if
(
narg
==
7
)
{
cut_global
=
force
->
numeric
(
arg
[
0
]);
limit_size_flag
=
force
->
inumeric
(
arg
[
1
]);
flexible_pressure_flag
=
force
->
inumeric
(
arg
[
2
]);
if
(
strcmp
(
arg
[
3
],
"ecp"
)
!=
0
)
error
->
all
(
"Illegal pair_style command"
);
else
{
PAULI_CORE_A
=
force
->
numeric
(
arg
[
4
]);
PAULI_CORE_B
=
force
->
numeric
(
arg
[
5
]);
PAULI_CORE_C
=
force
->
numeric
(
arg
[
6
]);
}
}
// Need to introduce 2 new constants w/out changing update.cpp
if
(
force
->
qqr2e
==
332.06371
)
{
// i.e. Real units chosen
h2e
=
627.509
;
// hartree->kcal/mol
hhmss2e
=
175.72044219620075
;
// hartree->kcal/mol * (Bohr->Angstrom)^2
}
else
if
(
force
->
qqr2e
==
1.0
)
{
// electron units
h2e
=
1.0
;
hhmss2e
=
1.0
;
}
else
error
->
all
(
"Check your units"
);
// reset cutoffs that have been explicitly set
if
(
allocated
)
{
int
i
,
j
;
for
(
i
=
1
;
i
<=
atom
->
ntypes
;
i
++
)
for
(
j
=
i
+
1
;
j
<=
atom
->
ntypes
;
j
++
)
if
(
setflag
[
i
][
j
])
cut
[
i
][
j
]
=
cut_global
;
}
}
/* ----------------------------------------------------------------------
set coeffs for one or more type pairs
------------------------------------------------------------------------- */
void
PairEffCut
::
coeff
(
int
narg
,
char
**
arg
)
{
if
(
narg
<
2
||
narg
>
3
)
error
->
all
(
"Incorrect args for pair coefficients"
);
if
(
!
allocated
)
allocate
();
int
ilo
,
ihi
,
jlo
,
jhi
;
force
->
bounds
(
arg
[
0
],
atom
->
ntypes
,
ilo
,
ihi
);
force
->
bounds
(
arg
[
1
],
atom
->
ntypes
,
jlo
,
jhi
);
double
cut_one
=
cut_global
;
if
(
narg
==
3
)
cut_one
=
atof
(
arg
[
2
]);
int
count
=
0
;
for
(
int
i
=
ilo
;
i
<=
ihi
;
i
++
)
{
for
(
int
j
=
MAX
(
jlo
,
i
);
j
<=
jhi
;
j
++
)
{
cut
[
i
][
j
]
=
cut_one
;
setflag
[
i
][
j
]
=
1
;
count
++
;
}
}
if
(
count
==
0
)
error
->
all
(
"Incorrect args for pair coefficients"
);
}
/* ----------------------------------------------------------------------
init specific to this pair style
------------------------------------------------------------------------- */
void
PairEffCut
::
init_style
()
{
// error and warning checks
if
(
!
atom
->
q_flag
||
!
atom
->
spin_flag
||
!
atom
->
eradius_flag
||
!
atom
->
erforce_flag
)
error
->
all
(
"Pair eff/cut requires atom attributes "
"q, spin, eradius, erforce"
);
// add hook to minimizer for eradius and erforce
if
(
update
->
whichflag
==
2
)
int
ignore
=
update
->
minimize
->
request
(
this
,
1
,
0.01
);
// make sure to use the appropriate timestep when using real units
if
(
update
->
whichflag
==
1
)
{
if
(
force
->
qqr2e
==
332.06371
&&
update
->
dt
==
1.0
)
error
->
all
(
"You must lower the default real units timestep for pEFF "
);
}
// need a half neigh list and optionally a granular history neigh list
int
irequest
=
neighbor
->
request
(
this
);
}
/* ----------------------------------------------------------------------
init for one type pair i,j and corresponding j,i
------------------------------------------------------------------------- */
double
PairEffCut
::
init_one
(
int
i
,
int
j
)
{
if
(
setflag
[
i
][
j
]
==
0
)
cut
[
i
][
j
]
=
mix_distance
(
cut
[
i
][
i
],
cut
[
j
][
j
]);
return
cut
[
i
][
j
];
}
/* ----------------------------------------------------------------------
proc 0 writes to restart file
------------------------------------------------------------------------- */
void
PairEffCut
::
write_restart
(
FILE
*
fp
)
{
write_restart_settings
(
fp
);
int
i
,
j
;
for
(
i
=
1
;
i
<=
atom
->
ntypes
;
i
++
)
for
(
j
=
i
;
j
<=
atom
->
ntypes
;
j
++
)
{
fwrite
(
&
setflag
[
i
][
j
],
sizeof
(
int
),
1
,
fp
);
if
(
setflag
[
i
][
j
])
fwrite
(
&
cut
[
i
][
j
],
sizeof
(
double
),
1
,
fp
);
}
}
/* ----------------------------------------------------------------------
proc 0 reads from restart file, bcasts
------------------------------------------------------------------------- */
void
PairEffCut
::
read_restart
(
FILE
*
fp
)
{
read_restart_settings
(
fp
);
allocate
();
int
i
,
j
;
int
me
=
comm
->
me
;
for
(
i
=
1
;
i
<=
atom
->
ntypes
;
i
++
)
for
(
j
=
i
;
j
<=
atom
->
ntypes
;
j
++
)
{
if
(
me
==
0
)
fread
(
&
setflag
[
i
][
j
],
sizeof
(
int
),
1
,
fp
);
MPI_Bcast
(
&
setflag
[
i
][
j
],
1
,
MPI_INT
,
0
,
world
);
if
(
setflag
[
i
][
j
])
{
if
(
me
==
0
)
fread
(
&
cut
[
i
][
j
],
sizeof
(
double
),
1
,
fp
);
MPI_Bcast
(
&
cut
[
i
][
j
],
1
,
MPI_DOUBLE
,
0
,
world
);
}
}
}
/* ----------------------------------------------------------------------
proc 0 writes to restart file
------------------------------------------------------------------------- */
void
PairEffCut
::
write_restart_settings
(
FILE
*
fp
)
{
fwrite
(
&
cut_global
,
sizeof
(
double
),
1
,
fp
);
fwrite
(
&
offset_flag
,
sizeof
(
int
),
1
,
fp
);
fwrite
(
&
mix_flag
,
sizeof
(
int
),
1
,
fp
);
}
/* ----------------------------------------------------------------------
proc 0 reads from restart file, bcasts
------------------------------------------------------------------------- */
void
PairEffCut
::
read_restart_settings
(
FILE
*
fp
)
{
if
(
comm
->
me
==
0
)
{
fread
(
&
cut_global
,
sizeof
(
double
),
1
,
fp
);
fread
(
&
offset_flag
,
sizeof
(
int
),
1
,
fp
);
fread
(
&
mix_flag
,
sizeof
(
int
),
1
,
fp
);
}
MPI_Bcast
(
&
cut_global
,
1
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
offset_flag
,
1
,
MPI_INT
,
0
,
world
);
MPI_Bcast
(
&
mix_flag
,
1
,
MPI_INT
,
0
,
world
);
}
/* ----------------------------------------------------------------------
returns pointers to the log() of electron radius and corresponding force
minimizer operates on log(radius) so radius never goes negative
these arrays are stored locally by pair style
------------------------------------------------------------------------- */
void
PairEffCut
::
min_xf_pointers
(
int
ignore
,
double
**
xextra
,
double
**
fextra
)
{
// grow arrays if necessary
// need to be atom->nmax in length
if
(
atom
->
nmax
>
nmax
)
{
memory
->
destroy
(
min_eradius
);
memory
->
destroy
(
min_erforce
);
nmax
=
atom
->
nmax
;
memory
->
create
(
min_eradius
,
nmax
,
"pair:min_eradius"
);
memory
->
create
(
min_erforce
,
nmax
,
"pair:min_erforce"
);
}
*
xextra
=
min_eradius
;
*
fextra
=
min_erforce
;
}
/* ----------------------------------------------------------------------
minimizer requests the log() of electron radius and corresponding force
calculate and store in min_eradius and min_erforce
------------------------------------------------------------------------- */
void
PairEffCut
::
min_xf_get
(
int
ignore
)
{
double
*
eradius
=
atom
->
eradius
;
double
*
erforce
=
atom
->
erforce
;
int
*
spin
=
atom
->
spin
;
int
nlocal
=
atom
->
nlocal
;
for
(
int
i
=
0
;
i
<
nlocal
;
i
++
)
if
(
spin
[
i
])
{
min_eradius
[
i
]
=
log
(
eradius
[
i
]);
min_erforce
[
i
]
=
eradius
[
i
]
*
erforce
[
i
];
}
else
min_eradius
[
i
]
=
min_erforce
[
i
]
=
0.0
;
}
/* ----------------------------------------------------------------------
minimizer has changed the log() of electron radius
propagate the change back to eradius
------------------------------------------------------------------------- */
void
PairEffCut
::
min_x_set
(
int
ignore
)
{
double
*
eradius
=
atom
->
eradius
;
int
*
spin
=
atom
->
spin
;
int
nlocal
=
atom
->
nlocal
;
for
(
int
i
=
0
;
i
<
nlocal
;
i
++
)
if
(
spin
[
i
])
eradius
[
i
]
=
exp
(
min_eradius
[
i
]);
}
/* ----------------------------------------------------------------------
memory usage of local atom-based arrays
------------------------------------------------------------------------- */
double
PairEffCut
::
memory_usage
()
{
double
bytes
=
maxeatom
*
sizeof
(
double
);
bytes
+=
maxvatom
*
6
*
sizeof
(
double
);
bytes
+=
2
*
nmax
*
sizeof
(
double
);
return
bytes
;
}
Event Timeline
Log In to Comment