Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90394137
pair_eff_cut.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Nov 1, 07:00
Size
29 KB
Mime Type
text/x-c
Expires
Sun, Nov 3, 07:00 (2 d)
Engine
blob
Format
Raw Data
Handle
22067825
Attached To
rLAMMPS lammps
pair_eff_cut.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Andres Jaramillo-Botero
------------------------------------------------------------------------- */
#include "math.h"
#include "stdio.h"
#include "stdlib.h"
#include "string.h"
#include "pair_eff_cut.h"
#include "pair_eff_inline.h"
#include "atom.h"
#include "update.h"
#include "min.h"
#include "domain.h"
#include "comm.h"
#include "force.h"
#include "neighbor.h"
#include "neigh_list.h"
#include "memory.h"
#include "error.h"
using namespace LAMMPS_NS;
#define MIN(a,b) ((a) < (b) ? (a) : (b))
#define MAX(a,b) ((a) > (b) ? (a) : (b))
/* ---------------------------------------------------------------------- */
PairEffCut::PairEffCut(LAMMPS *lmp) : Pair(lmp)
{
single_enable = 0;
nmax = 0;
min_eradius = NULL;
min_erforce = NULL;
nextra = 4;
pvector = new double[nextra];
}
/* ---------------------------------------------------------------------- */
PairEffCut::~PairEffCut()
{
delete [] pvector;
memory->destroy(min_eradius);
memory->destroy(min_erforce);
if (allocated) {
memory->destroy(setflag);
memory->destroy(cutsq);
memory->destroy(cut);
}
}
/* ---------------------------------------------------------------------- */
void PairEffCut::compute(int eflag, int vflag)
{
int i,j,ii,jj,inum,jnum,itype,jtype;
double xtmp,ytmp,ztmp,delx,dely,delz,energy;
double eke,ecoul,epauli,errestrain,halfcoul,halfpauli;
double fpair,fx,fy,fz;
double e1rforce,e2rforce,e1rvirial,e2rvirial;
double s_fpair, s_e1rforce, s_e2rforce;
double ecp_epauli, ecp_fpair, ecp_e1rforce, ecp_e2rforce;
double rsq,rc;
int *ilist,*jlist,*numneigh,**firstneigh;
energy = eke = epauli = ecoul = errestrain = 0.0;
// pvector = [KE, Pauli, ecoul, radial_restraint]
for (i=0; i<4; i++) pvector[i] = 0.0;
if (eflag || vflag) ev_setup(eflag,vflag);
else evflag = vflag_fdotr = 0;
double **x = atom->x;
double **f = atom->f;
double *q = atom->q;
double *erforce = atom->erforce;
double *eradius = atom->eradius;
int *spin = atom->spin;
int *type = atom->type;
int nlocal = atom->nlocal;
int newton_pair = force->newton_pair;
double qqrd2e = force->qqrd2e;
inum = list->inum;
ilist = list->ilist;
numneigh = list->numneigh;
firstneigh = list->firstneigh;
// loop over neighbors of my atoms
for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
xtmp = x[i][0];
ytmp = x[i][1];
ztmp = x[i][2];
itype = type[i];
jlist = firstneigh[i];
jnum = numneigh[i];
// add electron wavefuntion kinetic energy (not pairwise)
if (abs(spin[i])==1 || spin[i]==2) {
// reset energy and force temp variables
eke = epauli = ecoul = 0.0;
fpair = e1rforce = e2rforce = 0.0;
s_fpair = 0.0;
KinElec(eradius[i],&eke,&e1rforce);
// Fixed-core
if (spin[i] == 2) {
// KE(2s)+Coul(1s-1s)+Coul(2s-nuclei)+Pauli(2s)
eke *= 2;
ElecNucElec(q[i],0.0,eradius[i],&ecoul,&fpair,&e1rforce);
ElecNucElec(q[i],0.0,eradius[i],&ecoul,&fpair,&e1rforce);
ElecElecElec(0.0,eradius[i],eradius[i],&ecoul,&fpair,&e1rforce,&e2rforce);
// opposite spin electron interactions
PauliElecElec(0,0.0,eradius[i],eradius[i],
&epauli,&s_fpair,&e1rforce,&e2rforce);
// fix core electron size, i.e. don't contribute to ervirial
e2rforce = e1rforce = 0.0;
}
// apply unit conversion factors
eke *= hhmss2e;
ecoul *= qqrd2e;
fpair *= qqrd2e;
epauli *= hhmss2e;
s_fpair *= hhmss2e;
e1rforce *= hhmss2e;
// Sum up contributions
energy = eke + epauli + ecoul;
fpair = fpair + s_fpair;
erforce[i] += e1rforce;
// Tally energy and compute radial atomic virial contribution
if (evflag) {
ev_tally_eff(i,i,nlocal,newton_pair,energy,0.0);
if (flexible_pressure_flag) // iff flexible pressure flag on
ev_tally_eff(i,i,nlocal,newton_pair,0.0,e1rforce*eradius[i]);
}
if (eflag_global) {
pvector[0] += eke;
pvector[1] += epauli;
pvector[2] += ecoul;
}
}
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
j &= NEIGHMASK;
delx = xtmp - x[j][0];
dely = ytmp - x[j][1];
delz = ztmp - x[j][2];
rsq = delx*delx + dely*dely + delz*delz;
rc = sqrt(rsq);
jtype = type[j];
if (rsq < cutsq[itype][jtype]) {
energy = ecoul = epauli = ecp_epauli = 0.0;
fx = fy = fz = fpair = s_fpair = ecp_fpair = 0.0;
double taper = sqrt(cutsq[itype][jtype]);
double dist = rc / taper;
double spline = cutoff(dist);
double dspline = dcutoff(dist) / taper;
// nucleus (i) - nucleus (j) Coul interaction
if (spin[i] == 0 && spin[j] == 0) {
double qxq = q[i]*q[j];
ElecNucNuc(qxq, rc, &ecoul, &fpair);
}
// fixed-core (i) - nucleus (j) nuclear Coul interaction
else if (spin[i] == 2 && spin[j] == 0) {
double qxq = q[i]*q[j];
e1rforce = 0.0;
ElecNucNuc(qxq, rc, &ecoul, &fpair);
ElecNucElec(q[j],rc,eradius[i],&ecoul,&fpair,&e1rforce);
ElecNucElec(q[j],rc,eradius[i],&ecoul,&fpair,&e1rforce);
}
// nucleus (i) - fixed-core (j) nuclear Coul interaction
else if (spin[i] == 0 && spin[j] == 2) {
double qxq = q[i]*q[j];
e1rforce = 0.0;
ElecNucNuc(qxq, rc, &ecoul, &fpair);
ElecNucElec(q[i],rc,eradius[j],&ecoul,&fpair,&e1rforce);
ElecNucElec(q[i],rc,eradius[j],&ecoul,&fpair,&e1rforce);
}
// pseudo-core nucleus (i) - nucleus (j) interaction
else if (spin[i] == 3 && spin[j] == 0) {
double qxq = q[i]*q[j];
ElecCoreNuc(qxq, rc, eradius[i], &ecoul, &fpair);
}
// nucleus (i) - pseudo-core nucleus (j) interaction
else if (spin[i] == 0 && spin[j] == 3) {
double qxq = q[i]*q[j];
ElecCoreNuc(qxq, rc, eradius[j], &ecoul, &fpair);
}
// nucleus (i) - electron (j) Coul interaction
else if (spin[i] == 0 && abs(spin[j]) == 1) {
e1rforce = 0.0;
ElecNucElec(q[i],rc,eradius[j],&ecoul,&fpair,&e1rforce);
e1rforce = spline * qqrd2e * e1rforce;
erforce[j] += e1rforce;
// Radial electron virial, iff flexible pressure flag set
if (evflag && flexible_pressure_flag) {
e1rvirial = eradius[j] * e1rforce;
ev_tally_eff(j,j,nlocal,newton_pair,0.0,e1rvirial);
}
}
// electron (i) - nucleus (j) Coul interaction
else if (abs(spin[i]) == 1 && spin[j] == 0) {
e1rforce = 0.0;
ElecNucElec(q[j],rc,eradius[i],&ecoul,&fpair,&e1rforce);
e1rforce = spline * qqrd2e * e1rforce;
erforce[i] += e1rforce;
// Radial electron virial, iff flexible pressure flag set
if (evflag && flexible_pressure_flag) {
e1rvirial = eradius[i] * e1rforce;
ev_tally_eff(i,i,nlocal,newton_pair,0.0,e1rvirial);
}
}
// electron (i) - electron (j) interactions
else if (abs(spin[i]) == 1 && abs(spin[j]) == 1) {
e1rforce = e2rforce = 0.0;
s_e1rforce = s_e2rforce = 0.0;
ElecElecElec(rc,eradius[i],eradius[j],&ecoul,&fpair,
&e1rforce,&e2rforce);
PauliElecElec(spin[i] == spin[j],rc,eradius[i],eradius[j],
&epauli,&s_fpair,&s_e1rforce,&s_e2rforce);
// Apply conversion factor
epauli *= hhmss2e;
s_fpair *= hhmss2e;
e1rforce = spline * (qqrd2e * e1rforce + hhmss2e * s_e1rforce);
erforce[i] += e1rforce;
e2rforce = spline * (qqrd2e * e2rforce + hhmss2e * s_e2rforce);
erforce[j] += e2rforce;
// Radial electron virial, iff flexible pressure flag set
if (evflag && flexible_pressure_flag) {
e1rvirial = eradius[i] * e1rforce;
e2rvirial = eradius[j] * e2rforce;
ev_tally_eff(i,j,nlocal,newton_pair,0.0,e1rvirial+e2rvirial);
}
}
// fixed-core (i) - electron (j) interactions
else if (spin[i] == 2 && abs(spin[j]) == 1) {
e1rforce = e2rforce = 0.0;
s_e1rforce = s_e2rforce = 0.0;
ElecNucElec(q[i],rc,eradius[j],&ecoul,&fpair,&e2rforce);
ElecElecElec(rc,eradius[i],eradius[j],&ecoul,&fpair,
&e1rforce,&e2rforce);
ElecElecElec(rc,eradius[i],eradius[j],&ecoul,&fpair,
&e1rforce,&e2rforce);
PauliElecElec(0,rc,eradius[i],eradius[j],&epauli,
&s_fpair,&s_e1rforce,&s_e2rforce);
PauliElecElec(1,rc,eradius[i],eradius[j],&epauli,
&s_fpair,&s_e1rforce,&s_e2rforce);
// Apply conversion factor
epauli *= hhmss2e;
s_fpair *= hhmss2e;
// only update virial for j electron
e2rforce = spline * (qqrd2e * e2rforce + hhmss2e * s_e2rforce);
erforce[j] += e2rforce;
// Radial electron virial, iff flexible pressure flag set
if (evflag && flexible_pressure_flag) {
e2rvirial = eradius[j] * e2rforce;
ev_tally_eff(j,j,nlocal,newton_pair,0.0,e2rvirial);
}
}
// electron (i) - fixed-core (j) interactions
else if (abs(spin[i]) == 1 && spin[j] == 2) {
e1rforce = e2rforce = 0.0;
s_e1rforce = s_e2rforce = 0.0;
ElecNucElec(q[j],rc,eradius[i],&ecoul,&fpair,&e2rforce);
ElecElecElec(rc,eradius[j],eradius[i],&ecoul,&fpair,
&e1rforce,&e2rforce);
ElecElecElec(rc,eradius[j],eradius[i],&ecoul,&fpair,
&e1rforce,&e2rforce);
PauliElecElec(0,rc,eradius[j],eradius[i],&epauli,
&s_fpair,&s_e1rforce,&s_e2rforce);
PauliElecElec(1,rc,eradius[j],eradius[i],&epauli,
&s_fpair,&s_e1rforce,&s_e2rforce);
// Apply conversion factor
epauli *= hhmss2e;
s_fpair *= hhmss2e;
// only update virial for i electron
e2rforce = spline * (qqrd2e * e2rforce + hhmss2e * s_e2rforce);
erforce[i] += e2rforce;
// add radial atomic virial, iff flexible pressure flag set
if (evflag && flexible_pressure_flag) {
e2rvirial = eradius[i] * e2rforce;
ev_tally_eff(i,i,nlocal,newton_pair,0.0,e2rvirial);
}
}
// fixed-core (i) - fixed-core (j) interactions
else if (spin[i] == 2 && spin[j] == 2) {
e1rforce = e2rforce = 0.0;
s_e1rforce = s_e2rforce = 0.0;
double qxq = q[i]*q[j];
ElecNucNuc(qxq, rc, &ecoul, &fpair);
ElecNucElec(q[i],rc,eradius[j],&ecoul,&fpair,&e1rforce);
ElecNucElec(q[i],rc,eradius[j],&ecoul,&fpair,&e1rforce);
ElecNucElec(q[j],rc,eradius[i],&ecoul,&fpair,&e1rforce);
ElecNucElec(q[j],rc,eradius[i],&ecoul,&fpair,&e1rforce);
ElecElecElec(rc,eradius[i],eradius[j],&ecoul,&fpair,
&e1rforce,&e2rforce);
ElecElecElec(rc,eradius[i],eradius[j],&ecoul,&fpair,
&e1rforce,&e2rforce);
ElecElecElec(rc,eradius[i],eradius[j],&ecoul,&fpair,
&e1rforce,&e2rforce);
ElecElecElec(rc,eradius[i],eradius[j],&ecoul,&fpair,
&e1rforce,&e2rforce);
PauliElecElec(0,rc,eradius[i],eradius[j],&epauli,
&s_fpair,&s_e1rforce,&s_e2rforce);
PauliElecElec(1,rc,eradius[i],eradius[j],&epauli,
&s_fpair,&s_e1rforce,&s_e2rforce);
epauli *= 2;
s_fpair *= 2;
// Apply conversion factor
epauli *= hhmss2e;
s_fpair *= hhmss2e;
}
// pseudo-core (i) - electron/fixed-core electrons (j) interactions
else if (spin[i] == 3 && (abs(spin[j]) == 1 || spin[j] == 2)) {
e2rforce = ecp_e2rforce = 0.0;
if (abs(spin[j]) == 1) {
ElecCoreElec(q[i],rc,eradius[i],eradius[j],&ecoul,
&fpair,&e2rforce);
PauliCoreElec(rc,eradius[j],&ecp_epauli,&ecp_fpair,
&ecp_e2rforce,PAULI_CORE_A, PAULI_CORE_B,
PAULI_CORE_C);
} else { // add second s electron contribution from fixed-core
double qxq = q[i]*q[j];
ElecCoreNuc(qxq, rc, eradius[j], &ecoul, &fpair);
ElecCoreElec(q[i],rc,eradius[i],eradius[j],&ecoul,
&fpair,&e2rforce);
PauliCoreElec(rc,eradius[j],&ecp_epauli,&ecp_fpair,
&ecp_e2rforce,PAULI_CORE_A, PAULI_CORE_B,
PAULI_CORE_C);
}
// Apply conversion factor from Hartree to kcal/mol
ecp_epauli *= h2e;
ecp_fpair *= h2e;
// only update virial for j electron
e2rforce = spline * (qqrd2e * e2rforce + h2e * ecp_e2rforce);
erforce[j] += e2rforce;
// add radial atomic virial, iff flexible pressure flag set
if (evflag && flexible_pressure_flag) {
e2rvirial = eradius[j] * e2rforce;
ev_tally_eff(j,j,nlocal,newton_pair,0.0,e2rvirial);
}
}
// electron/fixed-core electrons (i) - pseudo-core (j) interactions
else if ((abs(spin[i]) == 1 || spin[i] == 2) && spin[j] == 3) {
e1rforce = ecp_e1rforce = 0.0;
if (abs(spin[j]) == 1) {
ElecCoreElec(q[j],rc,eradius[j],eradius[i],&ecoul,
&fpair,&e1rforce);
PauliCoreElec(rc,eradius[i],&ecp_epauli,&ecp_fpair,
&ecp_e1rforce,PAULI_CORE_A,PAULI_CORE_B,
PAULI_CORE_C);
} else {
double qxq = q[i]*q[j];
ElecCoreNuc(qxq,rc,eradius[i],&ecoul,&fpair);
ElecCoreElec(q[j],rc,eradius[j],eradius[i],&ecoul,
&fpair,&e1rforce);
PauliCoreElec(rc,eradius[i],&ecp_epauli,&ecp_fpair,
&ecp_e1rforce,PAULI_CORE_A, PAULI_CORE_B,
PAULI_CORE_C);
}
// Apply conversion factor from Hartree to kcal/mol
ecp_epauli *= h2e;
ecp_fpair *= h2e;
// only update virial for j electron
e1rforce = spline * (qqrd2e * e1rforce + h2e * ecp_e1rforce);
erforce[i] += e1rforce;
// add radial atomic virial, iff flexible pressure flag set
if (evflag && flexible_pressure_flag) {
e1rvirial = eradius[i] * e1rforce;
ev_tally_eff(i,i,nlocal,newton_pair,0.0,e1rvirial);
}
}
// pseudo-core (i) - pseudo-core (j) interactions
else if (spin[i] == 3 && abs(spin[j]) == 3) {
double qxq = q[i]*q[j];
ElecCoreCore(qxq,rc,eradius[i],eradius[j],&ecoul,&fpair);
}
// Apply Coulomb conversion factor for all cases
ecoul *= qqrd2e;
fpair *= qqrd2e;
// Sum up energy and force contributions
epauli += ecp_epauli;
energy = ecoul + epauli;
fpair = fpair + s_fpair + ecp_fpair;
// Apply cutoff spline
fpair = fpair * spline - energy * dspline;
energy = spline * energy;
// Tally cartesian forces
SmallRForce(delx,dely,delz,rc,fpair,&fx,&fy,&fz);
f[i][0] += fx;
f[i][1] += fy;
f[i][2] += fz;
if (newton_pair || j < nlocal) {
f[j][0] -= fx;
f[j][1] -= fy;
f[j][2] -= fz;
}
// Tally energy (in ecoul) and compute normal pressure virials
if (evflag) ev_tally_xyz(i,j,nlocal,newton_pair,0.0,
energy,fx,fy,fz,delx,dely,delz);
if (eflag_global) {
if (newton_pair) {
pvector[1] += spline * epauli;
pvector[2] += spline * ecoul;
}
else {
halfpauli = 0.5 * spline * epauli;
halfcoul = 0.5 * spline * ecoul;
if (i < nlocal) {
pvector[1] += halfpauli;
pvector[2] += halfcoul;
}
if (j < nlocal) {
pvector[1] += halfpauli;
pvector[2] += halfcoul;
}
}
}
}
}
// limit electron stifness (size) for periodic systems, to max=half-box-size
if (abs(spin[i]) == 1 && limit_size_flag) {
double half_box_length=0, dr, kfactor=hhmss2e*1.0;
e1rforce = errestrain = 0.0;
if (domain->xperiodic == 1 || domain->yperiodic == 1 ||
domain->zperiodic == 1) {
delx = domain->boxhi[0]-domain->boxlo[0];
dely = domain->boxhi[1]-domain->boxlo[1];
delz = domain->boxhi[2]-domain->boxlo[2];
half_box_length = 0.5 * MIN(delx, MIN(dely, delz));
if (eradius[i] > half_box_length) {
dr = eradius[i]-half_box_length;
errestrain=0.5*kfactor*dr*dr;
e1rforce=-kfactor*dr;
if (eflag_global) pvector[3] += errestrain;
erforce[i] += e1rforce;
// Tally radial restrain energy and add radial restrain virial
if (evflag) {
ev_tally_eff(i,i,nlocal,newton_pair,errestrain,0.0);
if (flexible_pressure_flag) // flexible electron pressure
ev_tally_eff(i,i,nlocal,newton_pair,0.0,eradius[i]*e1rforce);
}
}
}
}
}
if (vflag_fdotr) {
virial_compute();
if (flexible_pressure_flag) virial_eff_compute();
}
}
/* ----------------------------------------------------------------------
eff-specific contribution to global virial
------------------------------------------------------------------------- */
void PairEffCut::virial_eff_compute()
{
double *eradius = atom->eradius;
double *erforce = atom->erforce;
double e_virial;
int *spin = atom->spin;
// sum over force on all particles including ghosts
if (neighbor->includegroup == 0) {
int nall = atom->nlocal + atom->nghost;
for (int i = 0; i < nall; i++) {
if (spin[i]) {
e_virial = erforce[i]*eradius[i]/3;
virial[0] += e_virial;
virial[1] += e_virial;
virial[2] += e_virial;
}
}
// neighbor includegroup flag is set
// sum over force on initial nfirst particles and ghosts
} else {
int nall = atom->nfirst;
for (int i = 0; i < nall; i++) {
if (spin[i]) {
e_virial = erforce[i]*eradius[i]/3;
virial[0] += e_virial;
virial[1] += e_virial;
virial[2] += e_virial;
}
}
nall = atom->nlocal + atom->nghost;
for (int i = atom->nlocal; i < nall; i++) {
if (spin[i]) {
e_virial = erforce[i]*eradius[i]/3;
virial[0] += e_virial;
virial[1] += e_virial;
virial[2] += e_virial;
}
}
}
}
/* ----------------------------------------------------------------------
tally eng_vdwl and virial into per-atom accumulators
for virial radial electronic contributions
------------------------------------------------------------------------- */
void PairEffCut::ev_tally_eff(int i, int j, int nlocal, int newton_pair,
double energy, double e_virial)
{
double energyhalf;
double partial_evirial = e_virial/3.0;
double half_partial_evirial = partial_evirial/2;
int *spin = atom->spin;
if (eflag_either) {
if (eflag_global) {
if (newton_pair)
eng_coul += energy;
else {
energyhalf = 0.5*energy;
if (i < nlocal)
eng_coul += energyhalf;
if (j < nlocal)
eng_coul += energyhalf;
}
}
if (eflag_atom) {
if (newton_pair || i < nlocal) eatom[i] += 0.5 * energy;
if (newton_pair || j < nlocal) eatom[j] += 0.5 * energy;
}
}
if (vflag_either) {
if (vflag_global) {
if (spin[i] && i < nlocal) {
virial[0] += half_partial_evirial;
virial[1] += half_partial_evirial;
virial[2] += half_partial_evirial;
}
if (spin[j] && j < nlocal) {
virial[0] += half_partial_evirial;
virial[1] += half_partial_evirial;
virial[2] += half_partial_evirial;
}
}
if (vflag_atom) {
if (spin[i]) {
if (newton_pair || i < nlocal) {
vatom[i][0] += half_partial_evirial;
vatom[i][1] += half_partial_evirial;
vatom[i][2] += half_partial_evirial;
}
}
if (spin[j]) {
if (newton_pair || j < nlocal) {
vatom[j][0] += half_partial_evirial;
vatom[j][1] += half_partial_evirial;
vatom[j][2] += half_partial_evirial;
}
}
}
}
}
/* ----------------------------------------------------------------------
allocate all arrays
------------------------------------------------------------------------- */
void PairEffCut::allocate()
{
allocated = 1;
int n = atom->ntypes;
memory->create(setflag,n+1,n+1,"pair:setflag");
for (int i = 1; i <= n; i++)
for (int j = i; j <= n; j++)
setflag[i][j] = 0;
memory->create(cutsq,n+1,n+1,"pair:cutsq");
memory->create(cut,n+1,n+1,"pair:cut");
}
/* ---------------------------------------------------------------------
global settings
------------------------------------------------------------------------- */
void PairEffCut::settings(int narg, char **arg)
{
if (narg != 1 && narg != 3 && narg != 4 && narg != 7)
error->all("Illegal pair_style command");
// Defaults ECP parameters for Si
PAULI_CORE_A = 0.320852;
PAULI_CORE_B = 2.283269;
PAULI_CORE_C = 0.814857;
if (narg == 1) {
cut_global = force->numeric(arg[0]);
limit_size_flag = 0;
flexible_pressure_flag = 0;
} else if (narg == 3) {
cut_global = force->numeric(arg[0]);
limit_size_flag = force->inumeric(arg[1]);
flexible_pressure_flag = force->inumeric(arg[2]);
} else if (narg == 4) {
cut_global = force->numeric(arg[0]);
limit_size_flag = 0;
flexible_pressure_flag = 0;
if (strcmp(arg[1],"ecp") != 0)
error->all("Illegal pair_style command");
else {
PAULI_CORE_A = force->numeric(arg[2]);
PAULI_CORE_B = force->numeric(arg[3]);
PAULI_CORE_C = force->numeric(arg[4]);
}
} else if (narg == 7) {
cut_global = force->numeric(arg[0]);
limit_size_flag = force->inumeric(arg[1]);
flexible_pressure_flag = force->inumeric(arg[2]);
if (strcmp(arg[3],"ecp") != 0)
error->all("Illegal pair_style command");
else {
PAULI_CORE_A = force->numeric(arg[4]);
PAULI_CORE_B = force->numeric(arg[5]);
PAULI_CORE_C = force->numeric(arg[6]);
}
}
// Need to introduce 2 new constants w/out changing update.cpp
if (force->qqr2e==332.06371) { // i.e. Real units chosen
h2e = 627.509; // hartree->kcal/mol
hhmss2e = 175.72044219620075; // hartree->kcal/mol * (Bohr->Angstrom)^2
} else if (force->qqr2e==1.0) { // electron units
h2e = 1.0;
hhmss2e = 1.0;
} else error->all("Check your units");
// reset cutoffs that have been explicitly set
if (allocated) {
int i,j;
for (i = 1; i <= atom->ntypes; i++)
for (j = i+1; j <= atom->ntypes; j++)
if (setflag[i][j]) cut[i][j] = cut_global;
}
}
/* ----------------------------------------------------------------------
set coeffs for one or more type pairs
------------------------------------------------------------------------- */
void PairEffCut::coeff(int narg, char **arg)
{
if (narg < 2 || narg > 3) error->all("Incorrect args for pair coefficients");
if (!allocated) allocate();
int ilo,ihi,jlo,jhi;
force->bounds(arg[0],atom->ntypes,ilo,ihi);
force->bounds(arg[1],atom->ntypes,jlo,jhi);
double cut_one = cut_global;
if (narg == 3) cut_one = atof(arg[2]);
int count = 0;
for (int i = ilo; i <= ihi; i++) {
for (int j = MAX(jlo,i); j <= jhi; j++) {
cut[i][j] = cut_one;
setflag[i][j] = 1;
count++;
}
}
if (count == 0) error->all("Incorrect args for pair coefficients");
}
/* ----------------------------------------------------------------------
init specific to this pair style
------------------------------------------------------------------------- */
void PairEffCut::init_style()
{
// error and warning checks
if (!atom->q_flag || !atom->spin_flag ||
!atom->eradius_flag || !atom->erforce_flag)
error->all("Pair eff/cut requires atom attributes "
"q, spin, eradius, erforce");
// add hook to minimizer for eradius and erforce
if (update->whichflag == 2)
int ignore = update->minimize->request(this,1,0.01);
// make sure to use the appropriate timestep when using real units
if (update->whichflag == 1) {
if (force->qqr2e == 332.06371 && update->dt == 1.0)
error->all("You must lower the default real units timestep for pEFF ");
}
// need a half neigh list and optionally a granular history neigh list
int irequest = neighbor->request(this);
}
/* ----------------------------------------------------------------------
init for one type pair i,j and corresponding j,i
------------------------------------------------------------------------- */
double PairEffCut::init_one(int i, int j)
{
if (setflag[i][j] == 0)
cut[i][j] = mix_distance(cut[i][i],cut[j][j]);
return cut[i][j];
}
/* ----------------------------------------------------------------------
proc 0 writes to restart file
------------------------------------------------------------------------- */
void PairEffCut::write_restart(FILE *fp)
{
write_restart_settings(fp);
int i,j;
for (i = 1; i <= atom->ntypes; i++)
for (j = i; j <= atom->ntypes; j++) {
fwrite(&setflag[i][j],sizeof(int),1,fp);
if (setflag[i][j]) fwrite(&cut[i][j],sizeof(double),1,fp);
}
}
/* ----------------------------------------------------------------------
proc 0 reads from restart file, bcasts
------------------------------------------------------------------------- */
void PairEffCut::read_restart(FILE *fp)
{
read_restart_settings(fp);
allocate();
int i,j;
int me = comm->me;
for (i = 1; i <= atom->ntypes; i++)
for (j = i; j <= atom->ntypes; j++) {
if (me == 0) fread(&setflag[i][j],sizeof(int),1,fp);
MPI_Bcast(&setflag[i][j],1,MPI_INT,0,world);
if (setflag[i][j]) {
if (me == 0) fread(&cut[i][j],sizeof(double),1,fp);
MPI_Bcast(&cut[i][j],1,MPI_DOUBLE,0,world);
}
}
}
/* ----------------------------------------------------------------------
proc 0 writes to restart file
------------------------------------------------------------------------- */
void PairEffCut::write_restart_settings(FILE *fp)
{
fwrite(&cut_global,sizeof(double),1,fp);
fwrite(&offset_flag,sizeof(int),1,fp);
fwrite(&mix_flag,sizeof(int),1,fp);
}
/* ----------------------------------------------------------------------
proc 0 reads from restart file, bcasts
------------------------------------------------------------------------- */
void PairEffCut::read_restart_settings(FILE *fp)
{
if (comm->me == 0) {
fread(&cut_global,sizeof(double),1,fp);
fread(&offset_flag,sizeof(int),1,fp);
fread(&mix_flag,sizeof(int),1,fp);
}
MPI_Bcast(&cut_global,1,MPI_DOUBLE,0,world);
MPI_Bcast(&offset_flag,1,MPI_INT,0,world);
MPI_Bcast(&mix_flag,1,MPI_INT,0,world);
}
/* ----------------------------------------------------------------------
returns pointers to the log() of electron radius and corresponding force
minimizer operates on log(radius) so radius never goes negative
these arrays are stored locally by pair style
------------------------------------------------------------------------- */
void PairEffCut::min_xf_pointers(int ignore, double **xextra, double **fextra)
{
// grow arrays if necessary
// need to be atom->nmax in length
if (atom->nmax > nmax) {
memory->destroy(min_eradius);
memory->destroy(min_erforce);
nmax = atom->nmax;
memory->create(min_eradius,nmax,"pair:min_eradius");
memory->create(min_erforce,nmax,"pair:min_erforce");
}
*xextra = min_eradius;
*fextra = min_erforce;
}
/* ----------------------------------------------------------------------
minimizer requests the log() of electron radius and corresponding force
calculate and store in min_eradius and min_erforce
------------------------------------------------------------------------- */
void PairEffCut::min_xf_get(int ignore)
{
double *eradius = atom->eradius;
double *erforce = atom->erforce;
int *spin = atom->spin;
int nlocal = atom->nlocal;
for (int i = 0; i < nlocal; i++)
if (spin[i]) {
min_eradius[i] = log(eradius[i]);
min_erforce[i] = eradius[i]*erforce[i];
} else min_eradius[i] = min_erforce[i] = 0.0;
}
/* ----------------------------------------------------------------------
minimizer has changed the log() of electron radius
propagate the change back to eradius
------------------------------------------------------------------------- */
void PairEffCut::min_x_set(int ignore)
{
double *eradius = atom->eradius;
int *spin = atom->spin;
int nlocal = atom->nlocal;
for (int i = 0; i < nlocal; i++)
if (spin[i]) eradius[i] = exp(min_eradius[i]);
}
/* ----------------------------------------------------------------------
memory usage of local atom-based arrays
------------------------------------------------------------------------- */
double PairEffCut::memory_usage()
{
double bytes = maxeatom * sizeof(double);
bytes += maxvatom*6 * sizeof(double);
bytes += 2 * nmax * sizeof(double);
return bytes;
}
Event Timeline
Log In to Comment