Page MenuHomec4science

pair_eff_cut.cpp
No OneTemporary

File Metadata

Created
Fri, Nov 1, 07:00

pair_eff_cut.cpp

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Andres Jaramillo-Botero
------------------------------------------------------------------------- */
#include "math.h"
#include "stdio.h"
#include "stdlib.h"
#include "string.h"
#include "pair_eff_cut.h"
#include "pair_eff_inline.h"
#include "atom.h"
#include "update.h"
#include "min.h"
#include "domain.h"
#include "comm.h"
#include "force.h"
#include "neighbor.h"
#include "neigh_list.h"
#include "memory.h"
#include "error.h"
using namespace LAMMPS_NS;
#define MIN(a,b) ((a) < (b) ? (a) : (b))
#define MAX(a,b) ((a) > (b) ? (a) : (b))
/* ---------------------------------------------------------------------- */
PairEffCut::PairEffCut(LAMMPS *lmp) : Pair(lmp)
{
single_enable = 0;
nmax = 0;
min_eradius = NULL;
min_erforce = NULL;
nextra = 4;
pvector = new double[nextra];
}
/* ---------------------------------------------------------------------- */
PairEffCut::~PairEffCut()
{
delete [] pvector;
memory->destroy(min_eradius);
memory->destroy(min_erforce);
if (allocated) {
memory->destroy(setflag);
memory->destroy(cutsq);
memory->destroy(cut);
}
}
/* ---------------------------------------------------------------------- */
void PairEffCut::compute(int eflag, int vflag)
{
int i,j,ii,jj,inum,jnum,itype,jtype;
double xtmp,ytmp,ztmp,delx,dely,delz,energy;
double eke,ecoul,epauli,errestrain,halfcoul,halfpauli;
double fpair,fx,fy,fz;
double e1rforce,e2rforce,e1rvirial,e2rvirial;
double s_fpair, s_e1rforce, s_e2rforce;
double ecp_epauli, ecp_fpair, ecp_e1rforce, ecp_e2rforce;
double rsq,rc;
int *ilist,*jlist,*numneigh,**firstneigh;
energy = eke = epauli = ecoul = errestrain = 0.0;
// pvector = [KE, Pauli, ecoul, radial_restraint]
for (i=0; i<4; i++) pvector[i] = 0.0;
if (eflag || vflag) ev_setup(eflag,vflag);
else evflag = vflag_fdotr = 0;
double **x = atom->x;
double **f = atom->f;
double *q = atom->q;
double *erforce = atom->erforce;
double *eradius = atom->eradius;
int *spin = atom->spin;
int *type = atom->type;
int nlocal = atom->nlocal;
int newton_pair = force->newton_pair;
double qqrd2e = force->qqrd2e;
inum = list->inum;
ilist = list->ilist;
numneigh = list->numneigh;
firstneigh = list->firstneigh;
// loop over neighbors of my atoms
for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
xtmp = x[i][0];
ytmp = x[i][1];
ztmp = x[i][2];
itype = type[i];
jlist = firstneigh[i];
jnum = numneigh[i];
// add electron wavefuntion kinetic energy (not pairwise)
if (abs(spin[i])==1 || spin[i]==2) {
// reset energy and force temp variables
eke = epauli = ecoul = 0.0;
fpair = e1rforce = e2rforce = 0.0;
s_fpair = 0.0;
KinElec(eradius[i],&eke,&e1rforce);
// Fixed-core
if (spin[i] == 2) {
// KE(2s)+Coul(1s-1s)+Coul(2s-nuclei)+Pauli(2s)
eke *= 2;
ElecNucElec(q[i],0.0,eradius[i],&ecoul,&fpair,&e1rforce);
ElecNucElec(q[i],0.0,eradius[i],&ecoul,&fpair,&e1rforce);
ElecElecElec(0.0,eradius[i],eradius[i],&ecoul,&fpair,&e1rforce,&e2rforce);
// opposite spin electron interactions
PauliElecElec(0,0.0,eradius[i],eradius[i],
&epauli,&s_fpair,&e1rforce,&e2rforce);
// fix core electron size, i.e. don't contribute to ervirial
e2rforce = e1rforce = 0.0;
}
// apply unit conversion factors
eke *= hhmss2e;
ecoul *= qqrd2e;
fpair *= qqrd2e;
epauli *= hhmss2e;
s_fpair *= hhmss2e;
e1rforce *= hhmss2e;
// Sum up contributions
energy = eke + epauli + ecoul;
fpair = fpair + s_fpair;
erforce[i] += e1rforce;
// Tally energy and compute radial atomic virial contribution
if (evflag) {
ev_tally_eff(i,i,nlocal,newton_pair,energy,0.0);
if (flexible_pressure_flag) // iff flexible pressure flag on
ev_tally_eff(i,i,nlocal,newton_pair,0.0,e1rforce*eradius[i]);
}
if (eflag_global) {
pvector[0] += eke;
pvector[1] += epauli;
pvector[2] += ecoul;
}
}
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
j &= NEIGHMASK;
delx = xtmp - x[j][0];
dely = ytmp - x[j][1];
delz = ztmp - x[j][2];
rsq = delx*delx + dely*dely + delz*delz;
rc = sqrt(rsq);
jtype = type[j];
if (rsq < cutsq[itype][jtype]) {
energy = ecoul = epauli = ecp_epauli = 0.0;
fx = fy = fz = fpair = s_fpair = ecp_fpair = 0.0;
double taper = sqrt(cutsq[itype][jtype]);
double dist = rc / taper;
double spline = cutoff(dist);
double dspline = dcutoff(dist) / taper;
// nucleus (i) - nucleus (j) Coul interaction
if (spin[i] == 0 && spin[j] == 0) {
double qxq = q[i]*q[j];
ElecNucNuc(qxq, rc, &ecoul, &fpair);
}
// fixed-core (i) - nucleus (j) nuclear Coul interaction
else if (spin[i] == 2 && spin[j] == 0) {
double qxq = q[i]*q[j];
e1rforce = 0.0;
ElecNucNuc(qxq, rc, &ecoul, &fpair);
ElecNucElec(q[j],rc,eradius[i],&ecoul,&fpair,&e1rforce);
ElecNucElec(q[j],rc,eradius[i],&ecoul,&fpair,&e1rforce);
}
// nucleus (i) - fixed-core (j) nuclear Coul interaction
else if (spin[i] == 0 && spin[j] == 2) {
double qxq = q[i]*q[j];
e1rforce = 0.0;
ElecNucNuc(qxq, rc, &ecoul, &fpair);
ElecNucElec(q[i],rc,eradius[j],&ecoul,&fpair,&e1rforce);
ElecNucElec(q[i],rc,eradius[j],&ecoul,&fpair,&e1rforce);
}
// pseudo-core nucleus (i) - nucleus (j) interaction
else if (spin[i] == 3 && spin[j] == 0) {
double qxq = q[i]*q[j];
ElecCoreNuc(qxq, rc, eradius[i], &ecoul, &fpair);
}
// nucleus (i) - pseudo-core nucleus (j) interaction
else if (spin[i] == 0 && spin[j] == 3) {
double qxq = q[i]*q[j];
ElecCoreNuc(qxq, rc, eradius[j], &ecoul, &fpair);
}
// nucleus (i) - electron (j) Coul interaction
else if (spin[i] == 0 && abs(spin[j]) == 1) {
e1rforce = 0.0;
ElecNucElec(q[i],rc,eradius[j],&ecoul,&fpair,&e1rforce);
e1rforce = spline * qqrd2e * e1rforce;
erforce[j] += e1rforce;
// Radial electron virial, iff flexible pressure flag set
if (evflag && flexible_pressure_flag) {
e1rvirial = eradius[j] * e1rforce;
ev_tally_eff(j,j,nlocal,newton_pair,0.0,e1rvirial);
}
}
// electron (i) - nucleus (j) Coul interaction
else if (abs(spin[i]) == 1 && spin[j] == 0) {
e1rforce = 0.0;
ElecNucElec(q[j],rc,eradius[i],&ecoul,&fpair,&e1rforce);
e1rforce = spline * qqrd2e * e1rforce;
erforce[i] += e1rforce;
// Radial electron virial, iff flexible pressure flag set
if (evflag && flexible_pressure_flag) {
e1rvirial = eradius[i] * e1rforce;
ev_tally_eff(i,i,nlocal,newton_pair,0.0,e1rvirial);
}
}
// electron (i) - electron (j) interactions
else if (abs(spin[i]) == 1 && abs(spin[j]) == 1) {
e1rforce = e2rforce = 0.0;
s_e1rforce = s_e2rforce = 0.0;
ElecElecElec(rc,eradius[i],eradius[j],&ecoul,&fpair,
&e1rforce,&e2rforce);
PauliElecElec(spin[i] == spin[j],rc,eradius[i],eradius[j],
&epauli,&s_fpair,&s_e1rforce,&s_e2rforce);
// Apply conversion factor
epauli *= hhmss2e;
s_fpair *= hhmss2e;
e1rforce = spline * (qqrd2e * e1rforce + hhmss2e * s_e1rforce);
erforce[i] += e1rforce;
e2rforce = spline * (qqrd2e * e2rforce + hhmss2e * s_e2rforce);
erforce[j] += e2rforce;
// Radial electron virial, iff flexible pressure flag set
if (evflag && flexible_pressure_flag) {
e1rvirial = eradius[i] * e1rforce;
e2rvirial = eradius[j] * e2rforce;
ev_tally_eff(i,j,nlocal,newton_pair,0.0,e1rvirial+e2rvirial);
}
}
// fixed-core (i) - electron (j) interactions
else if (spin[i] == 2 && abs(spin[j]) == 1) {
e1rforce = e2rforce = 0.0;
s_e1rforce = s_e2rforce = 0.0;
ElecNucElec(q[i],rc,eradius[j],&ecoul,&fpair,&e2rforce);
ElecElecElec(rc,eradius[i],eradius[j],&ecoul,&fpair,
&e1rforce,&e2rforce);
ElecElecElec(rc,eradius[i],eradius[j],&ecoul,&fpair,
&e1rforce,&e2rforce);
PauliElecElec(0,rc,eradius[i],eradius[j],&epauli,
&s_fpair,&s_e1rforce,&s_e2rforce);
PauliElecElec(1,rc,eradius[i],eradius[j],&epauli,
&s_fpair,&s_e1rforce,&s_e2rforce);
// Apply conversion factor
epauli *= hhmss2e;
s_fpair *= hhmss2e;
// only update virial for j electron
e2rforce = spline * (qqrd2e * e2rforce + hhmss2e * s_e2rforce);
erforce[j] += e2rforce;
// Radial electron virial, iff flexible pressure flag set
if (evflag && flexible_pressure_flag) {
e2rvirial = eradius[j] * e2rforce;
ev_tally_eff(j,j,nlocal,newton_pair,0.0,e2rvirial);
}
}
// electron (i) - fixed-core (j) interactions
else if (abs(spin[i]) == 1 && spin[j] == 2) {
e1rforce = e2rforce = 0.0;
s_e1rforce = s_e2rforce = 0.0;
ElecNucElec(q[j],rc,eradius[i],&ecoul,&fpair,&e2rforce);
ElecElecElec(rc,eradius[j],eradius[i],&ecoul,&fpair,
&e1rforce,&e2rforce);
ElecElecElec(rc,eradius[j],eradius[i],&ecoul,&fpair,
&e1rforce,&e2rforce);
PauliElecElec(0,rc,eradius[j],eradius[i],&epauli,
&s_fpair,&s_e1rforce,&s_e2rforce);
PauliElecElec(1,rc,eradius[j],eradius[i],&epauli,
&s_fpair,&s_e1rforce,&s_e2rforce);
// Apply conversion factor
epauli *= hhmss2e;
s_fpair *= hhmss2e;
// only update virial for i electron
e2rforce = spline * (qqrd2e * e2rforce + hhmss2e * s_e2rforce);
erforce[i] += e2rforce;
// add radial atomic virial, iff flexible pressure flag set
if (evflag && flexible_pressure_flag) {
e2rvirial = eradius[i] * e2rforce;
ev_tally_eff(i,i,nlocal,newton_pair,0.0,e2rvirial);
}
}
// fixed-core (i) - fixed-core (j) interactions
else if (spin[i] == 2 && spin[j] == 2) {
e1rforce = e2rforce = 0.0;
s_e1rforce = s_e2rforce = 0.0;
double qxq = q[i]*q[j];
ElecNucNuc(qxq, rc, &ecoul, &fpair);
ElecNucElec(q[i],rc,eradius[j],&ecoul,&fpair,&e1rforce);
ElecNucElec(q[i],rc,eradius[j],&ecoul,&fpair,&e1rforce);
ElecNucElec(q[j],rc,eradius[i],&ecoul,&fpair,&e1rforce);
ElecNucElec(q[j],rc,eradius[i],&ecoul,&fpair,&e1rforce);
ElecElecElec(rc,eradius[i],eradius[j],&ecoul,&fpair,
&e1rforce,&e2rforce);
ElecElecElec(rc,eradius[i],eradius[j],&ecoul,&fpair,
&e1rforce,&e2rforce);
ElecElecElec(rc,eradius[i],eradius[j],&ecoul,&fpair,
&e1rforce,&e2rforce);
ElecElecElec(rc,eradius[i],eradius[j],&ecoul,&fpair,
&e1rforce,&e2rforce);
PauliElecElec(0,rc,eradius[i],eradius[j],&epauli,
&s_fpair,&s_e1rforce,&s_e2rforce);
PauliElecElec(1,rc,eradius[i],eradius[j],&epauli,
&s_fpair,&s_e1rforce,&s_e2rforce);
epauli *= 2;
s_fpair *= 2;
// Apply conversion factor
epauli *= hhmss2e;
s_fpair *= hhmss2e;
}
// pseudo-core (i) - electron/fixed-core electrons (j) interactions
else if (spin[i] == 3 && (abs(spin[j]) == 1 || spin[j] == 2)) {
e2rforce = ecp_e2rforce = 0.0;
if (abs(spin[j]) == 1) {
ElecCoreElec(q[i],rc,eradius[i],eradius[j],&ecoul,
&fpair,&e2rforce);
PauliCoreElec(rc,eradius[j],&ecp_epauli,&ecp_fpair,
&ecp_e2rforce,PAULI_CORE_A, PAULI_CORE_B,
PAULI_CORE_C);
} else { // add second s electron contribution from fixed-core
double qxq = q[i]*q[j];
ElecCoreNuc(qxq, rc, eradius[j], &ecoul, &fpair);
ElecCoreElec(q[i],rc,eradius[i],eradius[j],&ecoul,
&fpair,&e2rforce);
PauliCoreElec(rc,eradius[j],&ecp_epauli,&ecp_fpair,
&ecp_e2rforce,PAULI_CORE_A, PAULI_CORE_B,
PAULI_CORE_C);
}
// Apply conversion factor from Hartree to kcal/mol
ecp_epauli *= h2e;
ecp_fpair *= h2e;
// only update virial for j electron
e2rforce = spline * (qqrd2e * e2rforce + h2e * ecp_e2rforce);
erforce[j] += e2rforce;
// add radial atomic virial, iff flexible pressure flag set
if (evflag && flexible_pressure_flag) {
e2rvirial = eradius[j] * e2rforce;
ev_tally_eff(j,j,nlocal,newton_pair,0.0,e2rvirial);
}
}
// electron/fixed-core electrons (i) - pseudo-core (j) interactions
else if ((abs(spin[i]) == 1 || spin[i] == 2) && spin[j] == 3) {
e1rforce = ecp_e1rforce = 0.0;
if (abs(spin[j]) == 1) {
ElecCoreElec(q[j],rc,eradius[j],eradius[i],&ecoul,
&fpair,&e1rforce);
PauliCoreElec(rc,eradius[i],&ecp_epauli,&ecp_fpair,
&ecp_e1rforce,PAULI_CORE_A,PAULI_CORE_B,
PAULI_CORE_C);
} else {
double qxq = q[i]*q[j];
ElecCoreNuc(qxq,rc,eradius[i],&ecoul,&fpair);
ElecCoreElec(q[j],rc,eradius[j],eradius[i],&ecoul,
&fpair,&e1rforce);
PauliCoreElec(rc,eradius[i],&ecp_epauli,&ecp_fpair,
&ecp_e1rforce,PAULI_CORE_A, PAULI_CORE_B,
PAULI_CORE_C);
}
// Apply conversion factor from Hartree to kcal/mol
ecp_epauli *= h2e;
ecp_fpair *= h2e;
// only update virial for j electron
e1rforce = spline * (qqrd2e * e1rforce + h2e * ecp_e1rforce);
erforce[i] += e1rforce;
// add radial atomic virial, iff flexible pressure flag set
if (evflag && flexible_pressure_flag) {
e1rvirial = eradius[i] * e1rforce;
ev_tally_eff(i,i,nlocal,newton_pair,0.0,e1rvirial);
}
}
// pseudo-core (i) - pseudo-core (j) interactions
else if (spin[i] == 3 && abs(spin[j]) == 3) {
double qxq = q[i]*q[j];
ElecCoreCore(qxq,rc,eradius[i],eradius[j],&ecoul,&fpair);
}
// Apply Coulomb conversion factor for all cases
ecoul *= qqrd2e;
fpair *= qqrd2e;
// Sum up energy and force contributions
epauli += ecp_epauli;
energy = ecoul + epauli;
fpair = fpair + s_fpair + ecp_fpair;
// Apply cutoff spline
fpair = fpair * spline - energy * dspline;
energy = spline * energy;
// Tally cartesian forces
SmallRForce(delx,dely,delz,rc,fpair,&fx,&fy,&fz);
f[i][0] += fx;
f[i][1] += fy;
f[i][2] += fz;
if (newton_pair || j < nlocal) {
f[j][0] -= fx;
f[j][1] -= fy;
f[j][2] -= fz;
}
// Tally energy (in ecoul) and compute normal pressure virials
if (evflag) ev_tally_xyz(i,j,nlocal,newton_pair,0.0,
energy,fx,fy,fz,delx,dely,delz);
if (eflag_global) {
if (newton_pair) {
pvector[1] += spline * epauli;
pvector[2] += spline * ecoul;
}
else {
halfpauli = 0.5 * spline * epauli;
halfcoul = 0.5 * spline * ecoul;
if (i < nlocal) {
pvector[1] += halfpauli;
pvector[2] += halfcoul;
}
if (j < nlocal) {
pvector[1] += halfpauli;
pvector[2] += halfcoul;
}
}
}
}
}
// limit electron stifness (size) for periodic systems, to max=half-box-size
if (abs(spin[i]) == 1 && limit_size_flag) {
double half_box_length=0, dr, kfactor=hhmss2e*1.0;
e1rforce = errestrain = 0.0;
if (domain->xperiodic == 1 || domain->yperiodic == 1 ||
domain->zperiodic == 1) {
delx = domain->boxhi[0]-domain->boxlo[0];
dely = domain->boxhi[1]-domain->boxlo[1];
delz = domain->boxhi[2]-domain->boxlo[2];
half_box_length = 0.5 * MIN(delx, MIN(dely, delz));
if (eradius[i] > half_box_length) {
dr = eradius[i]-half_box_length;
errestrain=0.5*kfactor*dr*dr;
e1rforce=-kfactor*dr;
if (eflag_global) pvector[3] += errestrain;
erforce[i] += e1rforce;
// Tally radial restrain energy and add radial restrain virial
if (evflag) {
ev_tally_eff(i,i,nlocal,newton_pair,errestrain,0.0);
if (flexible_pressure_flag) // flexible electron pressure
ev_tally_eff(i,i,nlocal,newton_pair,0.0,eradius[i]*e1rforce);
}
}
}
}
}
if (vflag_fdotr) {
virial_compute();
if (flexible_pressure_flag) virial_eff_compute();
}
}
/* ----------------------------------------------------------------------
eff-specific contribution to global virial
------------------------------------------------------------------------- */
void PairEffCut::virial_eff_compute()
{
double *eradius = atom->eradius;
double *erforce = atom->erforce;
double e_virial;
int *spin = atom->spin;
// sum over force on all particles including ghosts
if (neighbor->includegroup == 0) {
int nall = atom->nlocal + atom->nghost;
for (int i = 0; i < nall; i++) {
if (spin[i]) {
e_virial = erforce[i]*eradius[i]/3;
virial[0] += e_virial;
virial[1] += e_virial;
virial[2] += e_virial;
}
}
// neighbor includegroup flag is set
// sum over force on initial nfirst particles and ghosts
} else {
int nall = atom->nfirst;
for (int i = 0; i < nall; i++) {
if (spin[i]) {
e_virial = erforce[i]*eradius[i]/3;
virial[0] += e_virial;
virial[1] += e_virial;
virial[2] += e_virial;
}
}
nall = atom->nlocal + atom->nghost;
for (int i = atom->nlocal; i < nall; i++) {
if (spin[i]) {
e_virial = erforce[i]*eradius[i]/3;
virial[0] += e_virial;
virial[1] += e_virial;
virial[2] += e_virial;
}
}
}
}
/* ----------------------------------------------------------------------
tally eng_vdwl and virial into per-atom accumulators
for virial radial electronic contributions
------------------------------------------------------------------------- */
void PairEffCut::ev_tally_eff(int i, int j, int nlocal, int newton_pair,
double energy, double e_virial)
{
double energyhalf;
double partial_evirial = e_virial/3.0;
double half_partial_evirial = partial_evirial/2;
int *spin = atom->spin;
if (eflag_either) {
if (eflag_global) {
if (newton_pair)
eng_coul += energy;
else {
energyhalf = 0.5*energy;
if (i < nlocal)
eng_coul += energyhalf;
if (j < nlocal)
eng_coul += energyhalf;
}
}
if (eflag_atom) {
if (newton_pair || i < nlocal) eatom[i] += 0.5 * energy;
if (newton_pair || j < nlocal) eatom[j] += 0.5 * energy;
}
}
if (vflag_either) {
if (vflag_global) {
if (spin[i] && i < nlocal) {
virial[0] += half_partial_evirial;
virial[1] += half_partial_evirial;
virial[2] += half_partial_evirial;
}
if (spin[j] && j < nlocal) {
virial[0] += half_partial_evirial;
virial[1] += half_partial_evirial;
virial[2] += half_partial_evirial;
}
}
if (vflag_atom) {
if (spin[i]) {
if (newton_pair || i < nlocal) {
vatom[i][0] += half_partial_evirial;
vatom[i][1] += half_partial_evirial;
vatom[i][2] += half_partial_evirial;
}
}
if (spin[j]) {
if (newton_pair || j < nlocal) {
vatom[j][0] += half_partial_evirial;
vatom[j][1] += half_partial_evirial;
vatom[j][2] += half_partial_evirial;
}
}
}
}
}
/* ----------------------------------------------------------------------
allocate all arrays
------------------------------------------------------------------------- */
void PairEffCut::allocate()
{
allocated = 1;
int n = atom->ntypes;
memory->create(setflag,n+1,n+1,"pair:setflag");
for (int i = 1; i <= n; i++)
for (int j = i; j <= n; j++)
setflag[i][j] = 0;
memory->create(cutsq,n+1,n+1,"pair:cutsq");
memory->create(cut,n+1,n+1,"pair:cut");
}
/* ---------------------------------------------------------------------
global settings
------------------------------------------------------------------------- */
void PairEffCut::settings(int narg, char **arg)
{
if (narg != 1 && narg != 3 && narg != 4 && narg != 7)
error->all("Illegal pair_style command");
// Defaults ECP parameters for Si
PAULI_CORE_A = 0.320852;
PAULI_CORE_B = 2.283269;
PAULI_CORE_C = 0.814857;
if (narg == 1) {
cut_global = force->numeric(arg[0]);
limit_size_flag = 0;
flexible_pressure_flag = 0;
} else if (narg == 3) {
cut_global = force->numeric(arg[0]);
limit_size_flag = force->inumeric(arg[1]);
flexible_pressure_flag = force->inumeric(arg[2]);
} else if (narg == 4) {
cut_global = force->numeric(arg[0]);
limit_size_flag = 0;
flexible_pressure_flag = 0;
if (strcmp(arg[1],"ecp") != 0)
error->all("Illegal pair_style command");
else {
PAULI_CORE_A = force->numeric(arg[2]);
PAULI_CORE_B = force->numeric(arg[3]);
PAULI_CORE_C = force->numeric(arg[4]);
}
} else if (narg == 7) {
cut_global = force->numeric(arg[0]);
limit_size_flag = force->inumeric(arg[1]);
flexible_pressure_flag = force->inumeric(arg[2]);
if (strcmp(arg[3],"ecp") != 0)
error->all("Illegal pair_style command");
else {
PAULI_CORE_A = force->numeric(arg[4]);
PAULI_CORE_B = force->numeric(arg[5]);
PAULI_CORE_C = force->numeric(arg[6]);
}
}
// Need to introduce 2 new constants w/out changing update.cpp
if (force->qqr2e==332.06371) { // i.e. Real units chosen
h2e = 627.509; // hartree->kcal/mol
hhmss2e = 175.72044219620075; // hartree->kcal/mol * (Bohr->Angstrom)^2
} else if (force->qqr2e==1.0) { // electron units
h2e = 1.0;
hhmss2e = 1.0;
} else error->all("Check your units");
// reset cutoffs that have been explicitly set
if (allocated) {
int i,j;
for (i = 1; i <= atom->ntypes; i++)
for (j = i+1; j <= atom->ntypes; j++)
if (setflag[i][j]) cut[i][j] = cut_global;
}
}
/* ----------------------------------------------------------------------
set coeffs for one or more type pairs
------------------------------------------------------------------------- */
void PairEffCut::coeff(int narg, char **arg)
{
if (narg < 2 || narg > 3) error->all("Incorrect args for pair coefficients");
if (!allocated) allocate();
int ilo,ihi,jlo,jhi;
force->bounds(arg[0],atom->ntypes,ilo,ihi);
force->bounds(arg[1],atom->ntypes,jlo,jhi);
double cut_one = cut_global;
if (narg == 3) cut_one = atof(arg[2]);
int count = 0;
for (int i = ilo; i <= ihi; i++) {
for (int j = MAX(jlo,i); j <= jhi; j++) {
cut[i][j] = cut_one;
setflag[i][j] = 1;
count++;
}
}
if (count == 0) error->all("Incorrect args for pair coefficients");
}
/* ----------------------------------------------------------------------
init specific to this pair style
------------------------------------------------------------------------- */
void PairEffCut::init_style()
{
// error and warning checks
if (!atom->q_flag || !atom->spin_flag ||
!atom->eradius_flag || !atom->erforce_flag)
error->all("Pair eff/cut requires atom attributes "
"q, spin, eradius, erforce");
// add hook to minimizer for eradius and erforce
if (update->whichflag == 2)
int ignore = update->minimize->request(this,1,0.01);
// make sure to use the appropriate timestep when using real units
if (update->whichflag == 1) {
if (force->qqr2e == 332.06371 && update->dt == 1.0)
error->all("You must lower the default real units timestep for pEFF ");
}
// need a half neigh list and optionally a granular history neigh list
int irequest = neighbor->request(this);
}
/* ----------------------------------------------------------------------
init for one type pair i,j and corresponding j,i
------------------------------------------------------------------------- */
double PairEffCut::init_one(int i, int j)
{
if (setflag[i][j] == 0)
cut[i][j] = mix_distance(cut[i][i],cut[j][j]);
return cut[i][j];
}
/* ----------------------------------------------------------------------
proc 0 writes to restart file
------------------------------------------------------------------------- */
void PairEffCut::write_restart(FILE *fp)
{
write_restart_settings(fp);
int i,j;
for (i = 1; i <= atom->ntypes; i++)
for (j = i; j <= atom->ntypes; j++) {
fwrite(&setflag[i][j],sizeof(int),1,fp);
if (setflag[i][j]) fwrite(&cut[i][j],sizeof(double),1,fp);
}
}
/* ----------------------------------------------------------------------
proc 0 reads from restart file, bcasts
------------------------------------------------------------------------- */
void PairEffCut::read_restart(FILE *fp)
{
read_restart_settings(fp);
allocate();
int i,j;
int me = comm->me;
for (i = 1; i <= atom->ntypes; i++)
for (j = i; j <= atom->ntypes; j++) {
if (me == 0) fread(&setflag[i][j],sizeof(int),1,fp);
MPI_Bcast(&setflag[i][j],1,MPI_INT,0,world);
if (setflag[i][j]) {
if (me == 0) fread(&cut[i][j],sizeof(double),1,fp);
MPI_Bcast(&cut[i][j],1,MPI_DOUBLE,0,world);
}
}
}
/* ----------------------------------------------------------------------
proc 0 writes to restart file
------------------------------------------------------------------------- */
void PairEffCut::write_restart_settings(FILE *fp)
{
fwrite(&cut_global,sizeof(double),1,fp);
fwrite(&offset_flag,sizeof(int),1,fp);
fwrite(&mix_flag,sizeof(int),1,fp);
}
/* ----------------------------------------------------------------------
proc 0 reads from restart file, bcasts
------------------------------------------------------------------------- */
void PairEffCut::read_restart_settings(FILE *fp)
{
if (comm->me == 0) {
fread(&cut_global,sizeof(double),1,fp);
fread(&offset_flag,sizeof(int),1,fp);
fread(&mix_flag,sizeof(int),1,fp);
}
MPI_Bcast(&cut_global,1,MPI_DOUBLE,0,world);
MPI_Bcast(&offset_flag,1,MPI_INT,0,world);
MPI_Bcast(&mix_flag,1,MPI_INT,0,world);
}
/* ----------------------------------------------------------------------
returns pointers to the log() of electron radius and corresponding force
minimizer operates on log(radius) so radius never goes negative
these arrays are stored locally by pair style
------------------------------------------------------------------------- */
void PairEffCut::min_xf_pointers(int ignore, double **xextra, double **fextra)
{
// grow arrays if necessary
// need to be atom->nmax in length
if (atom->nmax > nmax) {
memory->destroy(min_eradius);
memory->destroy(min_erforce);
nmax = atom->nmax;
memory->create(min_eradius,nmax,"pair:min_eradius");
memory->create(min_erforce,nmax,"pair:min_erforce");
}
*xextra = min_eradius;
*fextra = min_erforce;
}
/* ----------------------------------------------------------------------
minimizer requests the log() of electron radius and corresponding force
calculate and store in min_eradius and min_erforce
------------------------------------------------------------------------- */
void PairEffCut::min_xf_get(int ignore)
{
double *eradius = atom->eradius;
double *erforce = atom->erforce;
int *spin = atom->spin;
int nlocal = atom->nlocal;
for (int i = 0; i < nlocal; i++)
if (spin[i]) {
min_eradius[i] = log(eradius[i]);
min_erforce[i] = eradius[i]*erforce[i];
} else min_eradius[i] = min_erforce[i] = 0.0;
}
/* ----------------------------------------------------------------------
minimizer has changed the log() of electron radius
propagate the change back to eradius
------------------------------------------------------------------------- */
void PairEffCut::min_x_set(int ignore)
{
double *eradius = atom->eradius;
int *spin = atom->spin;
int nlocal = atom->nlocal;
for (int i = 0; i < nlocal; i++)
if (spin[i]) eradius[i] = exp(min_eradius[i]);
}
/* ----------------------------------------------------------------------
memory usage of local atom-based arrays
------------------------------------------------------------------------- */
double PairEffCut::memory_usage()
{
double bytes = maxeatom * sizeof(double);
bytes += maxvatom*6 * sizeof(double);
bytes += 2 * nmax * sizeof(double);
return bytes;
}

Event Timeline