Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F92294456
pair_lj_coul.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Nov 19, 04:08
Size
37 KB
Mime Type
text/x-c
Expires
Thu, Nov 21, 04:08 (2 d)
Engine
blob
Format
Raw Data
Handle
22415417
Attached To
rLAMMPS lammps
pair_lj_coul.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Pieter J. in 't Veld (SNL)
------------------------------------------------------------------------- */
#include "math.h"
#include "stdio.h"
#include "stdlib.h"
#include "string.h"
#include "math_vector.h"
#include "pair_lj_coul.h"
#include "atom.h"
#include "comm.h"
#include "neighbor.h"
#include "neigh_list.h"
#include "neigh_request.h"
#include "force.h"
#include "kspace.h"
#include "update.h"
#include "integrate.h"
#include "respa.h"
#include "memory.h"
#include "error.h"
using
namespace
LAMMPS_NS
;
#define EWALD_F 1.12837917
#define EWALD_P 0.3275911
#define A1 0.254829592
#define A2 -0.284496736
#define A3 1.421413741
#define A4 -1.453152027
#define A5 1.061405429
/* ---------------------------------------------------------------------- */
PairLJCoul
::
PairLJCoul
(
LAMMPS
*
lmp
)
:
Pair
(
lmp
)
{
respa_enable
=
1
;
ftable
=
NULL
;
}
/* ----------------------------------------------------------------------
global settings
------------------------------------------------------------------------- */
#define PAIR_ILLEGAL "Illegal pair_style lj/coul command"
#define PAIR_CUTOFF "Only one cut-off allowed when requesting all long"
#define PAIR_MISSING "Cut-offs missing in pair_style lj/coul"
#define PAIR_COUL_CUT "Coulombic cut not supported in pair_style lj/coul"
#define PAIR_LARGEST "Using largest cut-off for lj/coul long long"
#define PAIR_MIX "Mixing forced for lj coefficients"
void
PairLJCoul
::
options
(
char
**
arg
,
int
order
)
{
char
*
option
[]
=
{
"long"
,
"cut"
,
"off"
,
NULL
};
int
i
;
if
(
!*
arg
)
error
->
all
(
FLERR
,
PAIR_ILLEGAL
);
for
(
i
=
0
;
option
[
i
]
&&
strcmp
(
arg
[
0
],
option
[
i
]);
++
i
);
switch
(
i
)
{
default
:
error
->
all
(
FLERR
,
PAIR_ILLEGAL
);
case
0
:
ewald_order
|=
1
<<
order
;
break
;
// set kspace r^-order
case
2
:
ewald_off
|=
1
<<
order
;
// turn r^-order off
case
1
:
break
;
}
}
void
PairLJCoul
::
settings
(
int
narg
,
char
**
arg
)
{
if
(
narg
!=
3
&&
narg
!=
4
)
error
->
all
(
FLERR
,
"Illegal pair_style command"
);
ewald_off
=
0
;
ewald_order
=
0
;
options
(
arg
,
6
);
options
(
++
arg
,
1
);
if
(
!
comm
->
me
&&
ewald_order
&
(
1
<<
6
))
error
->
warning
(
FLERR
,
PAIR_MIX
);
if
(
!
comm
->
me
&&
ewald_order
==
((
1
<<
1
)
|
(
1
<<
6
)))
error
->
warning
(
FLERR
,
PAIR_LARGEST
);
if
(
!*
(
++
arg
))
error
->
all
(
FLERR
,
PAIR_MISSING
);
if
(
!
((
ewald_order
^
ewald_off
)
&
(
1
<<
1
)))
error
->
all
(
FLERR
,
PAIR_COUL_CUT
);
cut_lj_global
=
force
->
numeric
(
*
(
arg
++
));
if
(
*
arg
&&
(
ewald_order
&
0x42
==
0x42
))
error
->
all
(
FLERR
,
PAIR_CUTOFF
);
if
(
narg
==
4
)
cut_coul
=
force
->
numeric
(
*
arg
);
else
cut_coul
=
cut_lj_global
;
if
(
allocated
)
{
// reset explicit cuts
int
i
,
j
;
for
(
i
=
1
;
i
<=
atom
->
ntypes
;
i
++
)
for
(
j
=
i
+
1
;
j
<=
atom
->
ntypes
;
j
++
)
if
(
setflag
[
i
][
j
])
cut_lj
[
i
][
j
]
=
cut_lj_global
;
}
}
/* ----------------------------------------------------------------------
free all arrays
------------------------------------------------------------------------- */
PairLJCoul
::~
PairLJCoul
()
{
if
(
allocated
)
{
memory
->
destroy
(
setflag
);
memory
->
destroy
(
cutsq
);
memory
->
destroy
(
cut_lj_read
);
memory
->
destroy
(
cut_lj
);
memory
->
destroy
(
cut_ljsq
);
memory
->
destroy
(
epsilon_read
);
memory
->
destroy
(
epsilon
);
memory
->
destroy
(
sigma_read
);
memory
->
destroy
(
sigma
);
memory
->
destroy
(
lj1
);
memory
->
destroy
(
lj2
);
memory
->
destroy
(
lj3
);
memory
->
destroy
(
lj4
);
memory
->
destroy
(
offset
);
}
if
(
ftable
)
free_tables
();
}
/* ----------------------------------------------------------------------
allocate all arrays
------------------------------------------------------------------------- */
void
PairLJCoul
::
allocate
()
{
allocated
=
1
;
int
n
=
atom
->
ntypes
;
memory
->
create
(
setflag
,
n
+
1
,
n
+
1
,
"pair:setflag"
);
for
(
int
i
=
1
;
i
<=
n
;
i
++
)
for
(
int
j
=
i
;
j
<=
n
;
j
++
)
setflag
[
i
][
j
]
=
0
;
memory
->
create
(
cutsq
,
n
+
1
,
n
+
1
,
"pair:cutsq"
);
memory
->
create
(
cut_lj_read
,
n
+
1
,
n
+
1
,
"pair:cut_lj_read"
);
memory
->
create
(
cut_lj
,
n
+
1
,
n
+
1
,
"pair:cut_lj"
);
memory
->
create
(
cut_ljsq
,
n
+
1
,
n
+
1
,
"pair:cut_ljsq"
);
memory
->
create
(
epsilon_read
,
n
+
1
,
n
+
1
,
"pair:epsilon_read"
);
memory
->
create
(
epsilon
,
n
+
1
,
n
+
1
,
"pair:epsilon"
);
memory
->
create
(
sigma_read
,
n
+
1
,
n
+
1
,
"pair:sigma_read"
);
memory
->
create
(
sigma
,
n
+
1
,
n
+
1
,
"pair:sigma"
);
memory
->
create
(
lj1
,
n
+
1
,
n
+
1
,
"pair:lj1"
);
memory
->
create
(
lj2
,
n
+
1
,
n
+
1
,
"pair:lj2"
);
memory
->
create
(
lj3
,
n
+
1
,
n
+
1
,
"pair:lj3"
);
memory
->
create
(
lj4
,
n
+
1
,
n
+
1
,
"pair:lj4"
);
memory
->
create
(
offset
,
n
+
1
,
n
+
1
,
"pair:offset"
);
}
/* ----------------------------------------------------------------------
extract protected data from object
------------------------------------------------------------------------- */
void
*
PairLJCoul
::
extract
(
char
*
id
,
int
&
dim
)
{
char
*
ids
[]
=
{
"B"
,
"sigma"
,
"epsilon"
,
"ewald_order"
,
"ewald_cut"
,
"ewald_mix"
,
"cut_coul"
,
NULL
};
void
*
ptrs
[]
=
{
lj4
,
sigma
,
epsilon
,
&
ewald_order
,
&
cut_coul
,
&
mix_flag
,
&
cut_coul
,
NULL
};
int
i
;
for
(
i
=
0
;
ids
[
i
]
&&
strcmp
(
ids
[
i
],
id
);
++
i
);
if
(
i
<=
2
)
dim
=
2
;
else
dim
=
0
;
return
ptrs
[
i
];
}
/* ----------------------------------------------------------------------
set coeffs for one or more type pairs
------------------------------------------------------------------------- */
void
PairLJCoul
::
coeff
(
int
narg
,
char
**
arg
)
{
if
(
narg
<
4
||
narg
>
5
)
error
->
all
(
FLERR
,
"Incorrect args for pair coefficients"
);
if
(
!
allocated
)
allocate
();
int
ilo
,
ihi
,
jlo
,
jhi
;
force
->
bounds
(
arg
[
0
],
atom
->
ntypes
,
ilo
,
ihi
);
force
->
bounds
(
arg
[
1
],
atom
->
ntypes
,
jlo
,
jhi
);
double
epsilon_one
=
force
->
numeric
(
arg
[
2
]);
double
sigma_one
=
force
->
numeric
(
arg
[
3
]);
double
cut_lj_one
=
cut_lj_global
;
if
(
narg
==
5
)
cut_lj_one
=
force
->
numeric
(
arg
[
4
]);
int
count
=
0
;
for
(
int
i
=
ilo
;
i
<=
ihi
;
i
++
)
{
for
(
int
j
=
MAX
(
jlo
,
i
);
j
<=
jhi
;
j
++
)
{
epsilon_read
[
i
][
j
]
=
epsilon_one
;
sigma_read
[
i
][
j
]
=
sigma_one
;
cut_lj_read
[
i
][
j
]
=
cut_lj_one
;
setflag
[
i
][
j
]
=
1
;
count
++
;
}
}
if
(
count
==
0
)
error
->
all
(
FLERR
,
"Incorrect args for pair coefficients"
);
}
/* ----------------------------------------------------------------------
init specific to this pair style
------------------------------------------------------------------------- */
void
PairLJCoul
::
init_style
()
{
char
*
style1
[]
=
{
"ewald"
,
"ewald/n"
,
"pppm"
,
NULL
};
char
*
style6
[]
=
{
"ewald/n"
,
NULL
};
int
i
;
// require an atom style with charge defined
if
(
!
atom
->
q_flag
&&
(
ewald_order
&
(
1
<<
1
)))
error
->
all
(
FLERR
,
"Invoking coulombic in pair style lj/coul requires atom attribute q"
);
// request regular or rRESPA neighbor lists
int
irequest
;
if
(
update
->
whichflag
==
0
&&
strstr
(
update
->
integrate_style
,
"respa"
))
{
int
respa
=
0
;
if
(((
Respa
*
)
update
->
integrate
)
->
level_inner
>=
0
)
respa
=
1
;
if
(((
Respa
*
)
update
->
integrate
)
->
level_middle
>=
0
)
respa
=
2
;
if
(
respa
==
0
)
irequest
=
neighbor
->
request
(
this
);
else
if
(
respa
==
1
)
{
irequest
=
neighbor
->
request
(
this
);
neighbor
->
requests
[
irequest
]
->
id
=
1
;
neighbor
->
requests
[
irequest
]
->
half
=
0
;
neighbor
->
requests
[
irequest
]
->
respainner
=
1
;
irequest
=
neighbor
->
request
(
this
);
neighbor
->
requests
[
irequest
]
->
id
=
3
;
neighbor
->
requests
[
irequest
]
->
half
=
0
;
neighbor
->
requests
[
irequest
]
->
respaouter
=
1
;
}
else
{
irequest
=
neighbor
->
request
(
this
);
neighbor
->
requests
[
irequest
]
->
id
=
1
;
neighbor
->
requests
[
irequest
]
->
half
=
0
;
neighbor
->
requests
[
irequest
]
->
respainner
=
1
;
irequest
=
neighbor
->
request
(
this
);
neighbor
->
requests
[
irequest
]
->
id
=
2
;
neighbor
->
requests
[
irequest
]
->
half
=
0
;
neighbor
->
requests
[
irequest
]
->
respamiddle
=
1
;
irequest
=
neighbor
->
request
(
this
);
neighbor
->
requests
[
irequest
]
->
id
=
3
;
neighbor
->
requests
[
irequest
]
->
half
=
0
;
neighbor
->
requests
[
irequest
]
->
respaouter
=
1
;
}
}
else
irequest
=
neighbor
->
request
(
this
);
cut_coulsq
=
cut_coul
*
cut_coul
;
// set rRESPA cutoffs
if
(
strstr
(
update
->
integrate_style
,
"respa"
)
&&
((
Respa
*
)
update
->
integrate
)
->
level_inner
>=
0
)
cut_respa
=
((
Respa
*
)
update
->
integrate
)
->
cutoff
;
else
cut_respa
=
NULL
;
// ensure use of KSpace long-range solver, set g_ewald
if
(
ewald_order
&
(
1
<<
1
))
{
// r^-1 kspace
if
(
force
->
kspace
==
NULL
)
error
->
all
(
FLERR
,
"Pair style is incompatible with KSpace style"
);
for
(
i
=
0
;
style1
[
i
]
&&
strcmp
(
force
->
kspace_style
,
style1
[
i
]);
++
i
);
if
(
!
style1
[
i
])
error
->
all
(
FLERR
,
"Pair style is incompatible with KSpace style"
);
}
if
(
ewald_order
&
(
1
<<
6
))
{
// r^-6 kspace
if
(
force
->
kspace
==
NULL
)
error
->
all
(
FLERR
,
"Pair style is incompatible with KSpace style"
);
for
(
i
=
0
;
style6
[
i
]
&&
strcmp
(
force
->
kspace_style
,
style6
[
i
]);
++
i
);
if
(
!
style6
[
i
])
error
->
all
(
FLERR
,
"Pair style is incompatible with KSpace style"
);
}
if
(
force
->
kspace
)
g_ewald
=
force
->
kspace
->
g_ewald
;
// setup force tables
if
(
ncoultablebits
)
init_tables
();
}
/* ----------------------------------------------------------------------
neighbor callback to inform pair style of neighbor list to use
regular or rRESPA
------------------------------------------------------------------------- */
void
PairLJCoul
::
init_list
(
int
id
,
NeighList
*
ptr
)
{
if
(
id
==
0
)
list
=
ptr
;
else
if
(
id
==
1
)
listinner
=
ptr
;
else
if
(
id
==
2
)
listmiddle
=
ptr
;
else
if
(
id
==
3
)
listouter
=
ptr
;
}
/* ----------------------------------------------------------------------
init for one type pair i,j and corresponding j,i
------------------------------------------------------------------------- */
double
PairLJCoul
::
init_one
(
int
i
,
int
j
)
{
if
((
ewald_order
&
(
1
<<
6
))
||
(
setflag
[
i
][
j
]
==
0
))
{
epsilon
[
i
][
j
]
=
mix_energy
(
epsilon_read
[
i
][
i
],
epsilon_read
[
j
][
j
],
sigma_read
[
i
][
i
],
sigma_read
[
j
][
j
]);
sigma
[
i
][
j
]
=
mix_distance
(
sigma_read
[
i
][
i
],
sigma_read
[
j
][
j
]);
if
(
ewald_order
&
(
1
<<
6
))
cut_lj
[
i
][
j
]
=
cut_lj_global
;
else
cut_lj
[
i
][
j
]
=
mix_distance
(
cut_lj_read
[
i
][
i
],
cut_lj_read
[
j
][
j
]);
}
else
{
sigma
[
i
][
j
]
=
sigma_read
[
i
][
j
];
epsilon
[
i
][
j
]
=
epsilon_read
[
i
][
j
];
cut_lj
[
i
][
j
]
=
cut_lj_read
[
i
][
j
];
}
double
cut
=
MAX
(
cut_lj
[
i
][
j
],
cut_coul
);
cutsq
[
i
][
j
]
=
cut
*
cut
;
cut_ljsq
[
i
][
j
]
=
cut_lj
[
i
][
j
]
*
cut_lj
[
i
][
j
];
lj1
[
i
][
j
]
=
48.0
*
epsilon
[
i
][
j
]
*
pow
(
sigma
[
i
][
j
],
12.0
);
lj2
[
i
][
j
]
=
24.0
*
epsilon
[
i
][
j
]
*
pow
(
sigma
[
i
][
j
],
6.0
);
lj3
[
i
][
j
]
=
4.0
*
epsilon
[
i
][
j
]
*
pow
(
sigma
[
i
][
j
],
12.0
);
lj4
[
i
][
j
]
=
4.0
*
epsilon
[
i
][
j
]
*
pow
(
sigma
[
i
][
j
],
6.0
);
// check interior rRESPA cutoff
if
(
cut_respa
&&
MIN
(
cut_lj
[
i
][
j
],
cut_coul
)
<
cut_respa
[
3
])
error
->
all
(
FLERR
,
"Pair cutoff < Respa interior cutoff"
);
if
(
offset_flag
)
{
double
ratio
=
sigma
[
i
][
j
]
/
cut_lj
[
i
][
j
];
offset
[
i
][
j
]
=
4.0
*
epsilon
[
i
][
j
]
*
(
pow
(
ratio
,
12.0
)
-
pow
(
ratio
,
6.0
));
}
else
offset
[
i
][
j
]
=
0.0
;
cutsq
[
j
][
i
]
=
cutsq
[
i
][
j
];
cut_ljsq
[
j
][
i
]
=
cut_ljsq
[
i
][
j
];
lj1
[
j
][
i
]
=
lj1
[
i
][
j
];
lj2
[
j
][
i
]
=
lj2
[
i
][
j
];
lj3
[
j
][
i
]
=
lj3
[
i
][
j
];
lj4
[
j
][
i
]
=
lj4
[
i
][
j
];
offset
[
j
][
i
]
=
offset
[
i
][
j
];
return
cut
;
}
/* ----------------------------------------------------------------------
proc 0 writes to restart file
------------------------------------------------------------------------- */
void
PairLJCoul
::
write_restart
(
FILE
*
fp
)
{
write_restart_settings
(
fp
);
int
i
,
j
;
for
(
i
=
1
;
i
<=
atom
->
ntypes
;
i
++
)
for
(
j
=
i
;
j
<=
atom
->
ntypes
;
j
++
)
{
fwrite
(
&
setflag
[
i
][
j
],
sizeof
(
int
),
1
,
fp
);
if
(
setflag
[
i
][
j
])
{
fwrite
(
&
epsilon_read
[
i
][
j
],
sizeof
(
double
),
1
,
fp
);
fwrite
(
&
sigma_read
[
i
][
j
],
sizeof
(
double
),
1
,
fp
);
fwrite
(
&
cut_lj_read
[
i
][
j
],
sizeof
(
double
),
1
,
fp
);
}
}
}
/* ----------------------------------------------------------------------
proc 0 reads from restart file, bcasts
------------------------------------------------------------------------- */
void
PairLJCoul
::
read_restart
(
FILE
*
fp
)
{
read_restart_settings
(
fp
);
allocate
();
int
i
,
j
;
int
me
=
comm
->
me
;
for
(
i
=
1
;
i
<=
atom
->
ntypes
;
i
++
)
for
(
j
=
i
;
j
<=
atom
->
ntypes
;
j
++
)
{
if
(
me
==
0
)
fread
(
&
setflag
[
i
][
j
],
sizeof
(
int
),
1
,
fp
);
MPI_Bcast
(
&
setflag
[
i
][
j
],
1
,
MPI_INT
,
0
,
world
);
if
(
setflag
[
i
][
j
])
{
if
(
me
==
0
)
{
fread
(
&
epsilon_read
[
i
][
j
],
sizeof
(
double
),
1
,
fp
);
fread
(
&
sigma_read
[
i
][
j
],
sizeof
(
double
),
1
,
fp
);
fread
(
&
cut_lj_read
[
i
][
j
],
sizeof
(
double
),
1
,
fp
);
}
MPI_Bcast
(
&
epsilon_read
[
i
][
j
],
1
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
sigma_read
[
i
][
j
],
1
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
cut_lj_read
[
i
][
j
],
1
,
MPI_DOUBLE
,
0
,
world
);
}
}
}
/* ----------------------------------------------------------------------
proc 0 writes to restart file
------------------------------------------------------------------------- */
void
PairLJCoul
::
write_restart_settings
(
FILE
*
fp
)
{
fwrite
(
&
cut_lj_global
,
sizeof
(
double
),
1
,
fp
);
fwrite
(
&
cut_coul
,
sizeof
(
double
),
1
,
fp
);
fwrite
(
&
offset_flag
,
sizeof
(
int
),
1
,
fp
);
fwrite
(
&
mix_flag
,
sizeof
(
int
),
1
,
fp
);
fwrite
(
&
ewald_order
,
sizeof
(
int
),
1
,
fp
);
}
/* ----------------------------------------------------------------------
proc 0 reads from restart file, bcasts
------------------------------------------------------------------------- */
void
PairLJCoul
::
read_restart_settings
(
FILE
*
fp
)
{
if
(
comm
->
me
==
0
)
{
fread
(
&
cut_lj_global
,
sizeof
(
double
),
1
,
fp
);
fread
(
&
cut_coul
,
sizeof
(
double
),
1
,
fp
);
fread
(
&
offset_flag
,
sizeof
(
int
),
1
,
fp
);
fread
(
&
mix_flag
,
sizeof
(
int
),
1
,
fp
);
fread
(
&
ewald_order
,
sizeof
(
int
),
1
,
fp
);
}
MPI_Bcast
(
&
cut_lj_global
,
1
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
cut_coul
,
1
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
offset_flag
,
1
,
MPI_INT
,
0
,
world
);
MPI_Bcast
(
&
mix_flag
,
1
,
MPI_INT
,
0
,
world
);
MPI_Bcast
(
&
ewald_order
,
1
,
MPI_INT
,
0
,
world
);
}
/* ----------------------------------------------------------------------
compute pair interactions
------------------------------------------------------------------------- */
void
PairLJCoul
::
compute
(
int
eflag
,
int
vflag
)
{
double
evdwl
,
ecoul
,
fpair
;
evdwl
=
ecoul
=
0.0
;
if
(
eflag
||
vflag
)
ev_setup
(
eflag
,
vflag
);
else
evflag
=
vflag_fdotr
=
0
;
double
**
x
=
atom
->
x
,
*
x0
=
x
[
0
];
double
**
f
=
atom
->
f
,
*
f0
=
f
[
0
],
*
fi
=
f0
;
double
*
q
=
atom
->
q
;
int
*
type
=
atom
->
type
;
int
nlocal
=
atom
->
nlocal
;
double
*
special_coul
=
force
->
special_coul
;
double
*
special_lj
=
force
->
special_lj
;
int
newton_pair
=
force
->
newton_pair
;
double
qqrd2e
=
force
->
qqrd2e
;
int
i
,
j
,
order1
=
ewald_order
&
(
1
<<
1
),
order6
=
ewald_order
&
(
1
<<
6
);
int
*
ineigh
,
*
ineighn
,
*
jneigh
,
*
jneighn
,
typei
,
typej
,
ni
;
double
qi
,
qri
,
*
cutsqi
,
*
cut_ljsqi
,
*
lj1i
,
*
lj2i
,
*
lj3i
,
*
lj4i
,
*
offseti
;
double
rsq
,
r2inv
,
force_coul
,
force_lj
;
double
g2
=
g_ewald
*
g_ewald
,
g6
=
g2
*
g2
*
g2
,
g8
=
g6
*
g2
;
vector
xi
,
d
;
ineighn
=
(
ineigh
=
list
->
ilist
)
+
list
->
inum
;
for
(;
ineigh
<
ineighn
;
++
ineigh
)
{
// loop over my atoms
i
=
*
ineigh
;
fi
=
f0
+
3
*
i
;
if
(
order1
)
qri
=
(
qi
=
q
[
i
])
*
qqrd2e
;
// initialize constants
offseti
=
offset
[
typei
=
type
[
i
]];
lj1i
=
lj1
[
typei
];
lj2i
=
lj2
[
typei
];
lj3i
=
lj3
[
typei
];
lj4i
=
lj4
[
typei
];
cutsqi
=
cutsq
[
typei
];
cut_ljsqi
=
cut_ljsq
[
typei
];
memcpy
(
xi
,
x0
+
(
i
+
(
i
<<
1
)),
sizeof
(
vector
));
jneighn
=
(
jneigh
=
list
->
firstneigh
[
i
])
+
list
->
numneigh
[
i
];
for
(;
jneigh
<
jneighn
;
++
jneigh
)
{
// loop over neighbors
j
=
*
jneigh
;
ni
=
sbmask
(
j
);
j
&=
NEIGHMASK
;
{
register
double
*
xj
=
x0
+
(
j
+
(
j
<<
1
));
d
[
0
]
=
xi
[
0
]
-
xj
[
0
];
// pair vector
d
[
1
]
=
xi
[
1
]
-
xj
[
1
];
d
[
2
]
=
xi
[
2
]
-
xj
[
2
];
}
if
((
rsq
=
vec_dot
(
d
,
d
))
>=
cutsqi
[
typej
=
type
[
j
]])
continue
;
r2inv
=
1.0
/
rsq
;
if
(
order1
&&
(
rsq
<
cut_coulsq
))
{
// coulombic
if
(
!
ncoultablebits
||
rsq
<=
tabinnersq
)
{
// series real space
register
double
r
=
sqrt
(
rsq
),
x
=
g_ewald
*
r
;
register
double
s
=
qri
*
q
[
j
],
t
=
1.0
/
(
1.0
+
EWALD_P
*
x
);
if
(
ni
==
0
)
{
s
*=
g_ewald
*
exp
(
-
x
*
x
);
force_coul
=
(
t
*=
((((
t
*
A5
+
A4
)
*
t
+
A3
)
*
t
+
A2
)
*
t
+
A1
)
*
s
/
x
)
+
EWALD_F
*
s
;
if
(
eflag
)
ecoul
=
t
;
}
else
{
// special case
r
=
s
*
(
1.0
-
special_coul
[
ni
])
/
r
;
s
*=
g_ewald
*
exp
(
-
x
*
x
);
force_coul
=
(
t
*=
((((
t
*
A5
+
A4
)
*
t
+
A3
)
*
t
+
A2
)
*
t
+
A1
)
*
s
/
x
)
+
EWALD_F
*
s
-
r
;
if
(
eflag
)
ecoul
=
t
-
r
;
}
}
// table real space
else
{
register
union_int_float_t
t
;
t
.
f
=
rsq
;
register
const
int
k
=
(
t
.
i
&
ncoulmask
)
>>
ncoulshiftbits
;
register
double
f
=
(
rsq
-
rtable
[
k
])
*
drtable
[
k
],
qiqj
=
qi
*
q
[
j
];
if
(
ni
==
0
)
{
force_coul
=
qiqj
*
(
ftable
[
k
]
+
f
*
dftable
[
k
]);
if
(
eflag
)
ecoul
=
qiqj
*
(
etable
[
k
]
+
f
*
detable
[
k
]);
}
else
{
// special case
t
.
f
=
(
1.0
-
special_coul
[
ni
])
*
(
ctable
[
k
]
+
f
*
dctable
[
k
]);
force_coul
=
qiqj
*
(
ftable
[
k
]
+
f
*
dftable
[
k
]
-
t
.
f
);
if
(
eflag
)
ecoul
=
qiqj
*
(
etable
[
k
]
+
f
*
detable
[
k
]
-
t
.
f
);
}
}
}
else
force_coul
=
ecoul
=
0.0
;
if
(
rsq
<
cut_ljsqi
[
typej
])
{
// lj
if
(
order6
)
{
// long-range lj
register
double
rn
=
r2inv
*
r2inv
*
r2inv
;
register
double
x2
=
g2
*
rsq
,
a2
=
1.0
/
x2
;
x2
=
a2
*
exp
(
-
x2
)
*
lj4i
[
typej
];
if
(
ni
==
0
)
{
force_lj
=
(
rn
*=
rn
)
*
lj1i
[
typej
]
-
g8
*
(((
6.0
*
a2
+
6.0
)
*
a2
+
3.0
)
*
a2
+
1.0
)
*
x2
*
rsq
;
if
(
eflag
)
evdwl
=
rn
*
lj3i
[
typej
]
-
g6
*
((
a2
+
1.0
)
*
a2
+
0.5
)
*
x2
;
}
else
{
// special case
register
double
f
=
special_lj
[
ni
],
t
=
rn
*
(
1.0
-
f
);
force_lj
=
f
*
(
rn
*=
rn
)
*
lj1i
[
typej
]
-
g8
*
(((
6.0
*
a2
+
6.0
)
*
a2
+
3.0
)
*
a2
+
1.0
)
*
x2
*
rsq
+
t
*
lj2i
[
typej
];
if
(
eflag
)
evdwl
=
f
*
rn
*
lj3i
[
typej
]
-
g6
*
((
a2
+
1.0
)
*
a2
+
0.5
)
*
x2
+
t
*
lj4i
[
typej
];
}
}
else
{
// cut lj
register
double
rn
=
r2inv
*
r2inv
*
r2inv
;
if
(
ni
==
0
)
{
force_lj
=
rn
*
(
rn
*
lj1i
[
typej
]
-
lj2i
[
typej
]);
if
(
eflag
)
evdwl
=
rn
*
(
rn
*
lj3i
[
typej
]
-
lj4i
[
typej
])
-
offseti
[
typej
];
}
else
{
// special case
register
double
f
=
special_lj
[
ni
];
force_lj
=
f
*
rn
*
(
rn
*
lj1i
[
typej
]
-
lj2i
[
typej
]);
if
(
eflag
)
evdwl
=
f
*
(
rn
*
(
rn
*
lj3i
[
typej
]
-
lj4i
[
typej
])
-
offseti
[
typej
]);
}
}
}
else
force_lj
=
evdwl
=
0.0
;
fpair
=
(
force_coul
+
force_lj
)
*
r2inv
;
if
(
newton_pair
||
j
<
nlocal
)
{
register
double
*
fj
=
f0
+
(
j
+
(
j
<<
1
)),
f
;
fi
[
0
]
+=
f
=
d
[
0
]
*
fpair
;
fj
[
0
]
-=
f
;
fi
[
1
]
+=
f
=
d
[
1
]
*
fpair
;
fj
[
1
]
-=
f
;
fi
[
2
]
+=
f
=
d
[
2
]
*
fpair
;
fj
[
2
]
-=
f
;
}
else
{
fi
[
0
]
+=
d
[
0
]
*
fpair
;
fi
[
1
]
+=
d
[
1
]
*
fpair
;
fi
[
2
]
+=
d
[
2
]
*
fpair
;
}
if
(
evflag
)
ev_tally
(
i
,
j
,
nlocal
,
newton_pair
,
evdwl
,
ecoul
,
fpair
,
d
[
0
],
d
[
1
],
d
[
2
]);
}
}
if
(
vflag_fdotr
)
virial_fdotr_compute
();
}
/* ---------------------------------------------------------------------- */
void
PairLJCoul
::
compute_inner
()
{
double
rsq
,
r2inv
,
force_coul
,
force_lj
,
fpair
;
int
*
type
=
atom
->
type
;
int
nlocal
=
atom
->
nlocal
;
double
*
x0
=
atom
->
x
[
0
],
*
f0
=
atom
->
f
[
0
],
*
fi
=
f0
,
*
q
=
atom
->
q
;
double
*
special_coul
=
force
->
special_coul
;
double
*
special_lj
=
force
->
special_lj
;
int
newton_pair
=
force
->
newton_pair
;
double
qqrd2e
=
force
->
qqrd2e
;
double
cut_out_on
=
cut_respa
[
0
];
double
cut_out_off
=
cut_respa
[
1
];
double
cut_out_diff
=
cut_out_off
-
cut_out_on
;
double
cut_out_on_sq
=
cut_out_on
*
cut_out_on
;
double
cut_out_off_sq
=
cut_out_off
*
cut_out_off
;
int
*
ineigh
,
*
ineighn
,
*
jneigh
,
*
jneighn
,
typei
,
typej
,
ni
;
int
i
,
j
,
order1
=
(
ewald_order
|
(
ewald_off
^-
1
))
&
(
1
<<
1
);
double
qri
,
*
cut_ljsqi
,
*
lj1i
,
*
lj2i
;
vector
xi
,
d
;
ineighn
=
(
ineigh
=
list
->
ilist
)
+
list
->
inum
;
for
(;
ineigh
<
ineighn
;
++
ineigh
)
{
// loop over my atoms
i
=
*
ineigh
;
fi
=
f0
+
3
*
i
;
qri
=
qqrd2e
*
q
[
i
];
memcpy
(
xi
,
x0
+
(
i
+
(
i
<<
1
)),
sizeof
(
vector
));
cut_ljsqi
=
cut_ljsq
[
typei
=
type
[
i
]];
lj1i
=
lj1
[
typei
];
lj2i
=
lj2
[
typei
];
jneighn
=
(
jneigh
=
list
->
firstneigh
[
i
])
+
list
->
numneigh
[
i
];
for
(;
jneigh
<
jneighn
;
++
jneigh
)
{
// loop over neighbors
j
=
*
jneigh
;
ni
=
sbmask
(
j
);
j
&=
NEIGHMASK
;
{
register
double
*
xj
=
x0
+
(
j
+
(
j
<<
1
));
d
[
0
]
=
xi
[
0
]
-
xj
[
0
];
// pair vector
d
[
1
]
=
xi
[
1
]
-
xj
[
1
];
d
[
2
]
=
xi
[
2
]
-
xj
[
2
];
}
if
((
rsq
=
vec_dot
(
d
,
d
))
>=
cut_out_off_sq
)
continue
;
r2inv
=
1.0
/
rsq
;
if
(
order1
&&
(
rsq
<
cut_coulsq
))
// coulombic
force_coul
=
ni
==
0
?
qri
*
q
[
j
]
*
sqrt
(
r2inv
)
:
qri
*
q
[
j
]
*
sqrt
(
r2inv
)
*
special_coul
[
ni
];
if
(
rsq
<
cut_ljsqi
[
typej
=
type
[
j
]])
{
// lennard-jones
register
double
rn
=
r2inv
*
r2inv
*
r2inv
;
force_lj
=
ni
==
0
?
rn
*
(
rn
*
lj1i
[
typej
]
-
lj2i
[
typej
])
:
rn
*
(
rn
*
lj1i
[
typej
]
-
lj2i
[
typej
])
*
special_lj
[
ni
];
}
else
force_lj
=
0.0
;
fpair
=
(
force_coul
+
force_lj
)
*
r2inv
;
if
(
rsq
>
cut_out_on_sq
)
{
// switching
register
double
rsw
=
(
sqrt
(
rsq
)
-
cut_out_on
)
/
cut_out_diff
;
fpair
*=
1.0
+
rsw
*
rsw
*
(
2.0
*
rsw
-
3.0
);
}
if
(
newton_pair
||
j
<
nlocal
)
{
// force update
register
double
*
fj
=
f0
+
(
j
+
(
j
<<
1
)),
f
;
fi
[
0
]
+=
f
=
d
[
0
]
*
fpair
;
fj
[
0
]
-=
f
;
fi
[
1
]
+=
f
=
d
[
1
]
*
fpair
;
fj
[
1
]
-=
f
;
fi
[
2
]
+=
f
=
d
[
2
]
*
fpair
;
fj
[
2
]
-=
f
;
}
else
{
fi
[
0
]
+=
d
[
0
]
*
fpair
;
fi
[
1
]
+=
d
[
1
]
*
fpair
;
fi
[
2
]
+=
d
[
2
]
*
fpair
;
}
}
}
}
/* ---------------------------------------------------------------------- */
void
PairLJCoul
::
compute_middle
()
{
double
rsq
,
r2inv
,
force_coul
,
force_lj
,
fpair
;
int
*
type
=
atom
->
type
;
int
nlocal
=
atom
->
nlocal
;
double
*
x0
=
atom
->
x
[
0
],
*
f0
=
atom
->
f
[
0
],
*
fi
=
f0
,
*
q
=
atom
->
q
;
double
*
special_coul
=
force
->
special_coul
;
double
*
special_lj
=
force
->
special_lj
;
int
newton_pair
=
force
->
newton_pair
;
double
qqrd2e
=
force
->
qqrd2e
;
double
cut_in_off
=
cut_respa
[
0
];
double
cut_in_on
=
cut_respa
[
1
];
double
cut_out_on
=
cut_respa
[
2
];
double
cut_out_off
=
cut_respa
[
3
];
double
cut_in_diff
=
cut_in_on
-
cut_in_off
;
double
cut_out_diff
=
cut_out_off
-
cut_out_on
;
double
cut_in_off_sq
=
cut_in_off
*
cut_in_off
;
double
cut_in_on_sq
=
cut_in_on
*
cut_in_on
;
double
cut_out_on_sq
=
cut_out_on
*
cut_out_on
;
double
cut_out_off_sq
=
cut_out_off
*
cut_out_off
;
int
*
ineigh
,
*
ineighn
,
*
jneigh
,
*
jneighn
,
typei
,
typej
,
ni
;
int
i
,
j
,
order1
=
(
ewald_order
|
(
ewald_off
^-
1
))
&
(
1
<<
1
);
double
qri
,
*
cut_ljsqi
,
*
lj1i
,
*
lj2i
;
vector
xi
,
d
;
ineighn
=
(
ineigh
=
list
->
ilist
)
+
list
->
inum
;
for
(;
ineigh
<
ineighn
;
++
ineigh
)
{
// loop over my atoms
i
=
*
ineigh
;
fi
=
f0
+
3
*
i
;
qri
=
qqrd2e
*
q
[
i
];
memcpy
(
xi
,
x0
+
(
i
+
(
i
<<
1
)),
sizeof
(
vector
));
cut_ljsqi
=
cut_ljsq
[
typei
=
type
[
i
]];
lj1i
=
lj1
[
typei
];
lj2i
=
lj2
[
typei
];
jneighn
=
(
jneigh
=
list
->
firstneigh
[
i
])
+
list
->
numneigh
[
i
];
for
(;
jneigh
<
jneighn
;
++
jneigh
)
{
j
=
*
jneigh
;
ni
=
sbmask
(
j
);
j
&=
NEIGHMASK
;
{
register
double
*
xj
=
x0
+
(
j
+
(
j
<<
1
));
d
[
0
]
=
xi
[
0
]
-
xj
[
0
];
// pair vector
d
[
1
]
=
xi
[
1
]
-
xj
[
1
];
d
[
2
]
=
xi
[
2
]
-
xj
[
2
];
}
if
((
rsq
=
vec_dot
(
d
,
d
))
>=
cut_out_off_sq
)
continue
;
if
(
rsq
<=
cut_in_off_sq
)
continue
;
r2inv
=
1.0
/
rsq
;
if
(
order1
&&
(
rsq
<
cut_coulsq
))
// coulombic
force_coul
=
ni
==
0
?
qri
*
q
[
j
]
*
sqrt
(
r2inv
)
:
qri
*
q
[
j
]
*
sqrt
(
r2inv
)
*
special_coul
[
ni
];
if
(
rsq
<
cut_ljsqi
[
typej
=
type
[
j
]])
{
// lennard-jones
register
double
rn
=
r2inv
*
r2inv
*
r2inv
;
force_lj
=
ni
==
0
?
rn
*
(
rn
*
lj1i
[
typej
]
-
lj2i
[
typej
])
:
rn
*
(
rn
*
lj1i
[
typej
]
-
lj2i
[
typej
])
*
special_lj
[
ni
];
}
else
force_lj
=
0.0
;
fpair
=
(
force_coul
+
force_lj
)
*
r2inv
;
if
(
rsq
<
cut_in_on_sq
)
{
// switching
register
double
rsw
=
(
sqrt
(
rsq
)
-
cut_in_off
)
/
cut_in_diff
;
fpair
*=
rsw
*
rsw
*
(
3.0
-
2.0
*
rsw
);
}
if
(
rsq
>
cut_out_on_sq
)
{
register
double
rsw
=
(
sqrt
(
rsq
)
-
cut_out_on
)
/
cut_out_diff
;
fpair
*=
1.0
+
rsw
*
rsw
*
(
2.0
*
rsw
-
3.0
);
}
if
(
newton_pair
||
j
<
nlocal
)
{
// force update
register
double
*
fj
=
f0
+
(
j
+
(
j
<<
1
)),
f
;
fi
[
0
]
+=
f
=
d
[
0
]
*
fpair
;
fj
[
0
]
-=
f
;
fi
[
1
]
+=
f
=
d
[
1
]
*
fpair
;
fj
[
1
]
-=
f
;
fi
[
2
]
+=
f
=
d
[
2
]
*
fpair
;
fj
[
2
]
-=
f
;
}
else
{
fi
[
0
]
+=
d
[
0
]
*
fpair
;
fi
[
1
]
+=
d
[
1
]
*
fpair
;
fi
[
2
]
+=
d
[
2
]
*
fpair
;
}
}
}
}
/* ---------------------------------------------------------------------- */
void
PairLJCoul
::
compute_outer
(
int
eflag
,
int
vflag
)
{
double
evdwl
,
ecoul
,
fpair
;
evdwl
=
ecoul
=
0.0
;
if
(
eflag
||
vflag
)
ev_setup
(
eflag
,
vflag
);
else
evflag
=
0
;
double
**
x
=
atom
->
x
,
*
x0
=
x
[
0
];
double
**
f
=
atom
->
f
,
*
f0
=
f
[
0
],
*
fi
=
f0
;
double
*
q
=
atom
->
q
;
int
*
type
=
atom
->
type
;
int
nlocal
=
atom
->
nlocal
;
double
*
special_coul
=
force
->
special_coul
;
double
*
special_lj
=
force
->
special_lj
;
int
newton_pair
=
force
->
newton_pair
;
double
qqrd2e
=
force
->
qqrd2e
;
int
i
,
j
,
order1
=
ewald_order
&
(
1
<<
1
),
order6
=
ewald_order
&
(
1
<<
6
);
int
*
ineigh
,
*
ineighn
,
*
jneigh
,
*
jneighn
,
typei
,
typej
,
ni
,
respa_flag
;
double
qi
,
qri
,
*
cutsqi
,
*
cut_ljsqi
,
*
lj1i
,
*
lj2i
,
*
lj3i
,
*
lj4i
,
*
offseti
;
double
rsq
,
r2inv
,
force_coul
,
force_lj
;
double
g2
=
g_ewald
*
g_ewald
,
g6
=
g2
*
g2
*
g2
,
g8
=
g6
*
g2
;
double
respa_lj
,
respa_coul
,
frespa
;
vector
xi
,
d
;
double
cut_in_off
=
cut_respa
[
2
];
double
cut_in_on
=
cut_respa
[
3
];
double
cut_in_diff
=
cut_in_on
-
cut_in_off
;
double
cut_in_off_sq
=
cut_in_off
*
cut_in_off
;
double
cut_in_on_sq
=
cut_in_on
*
cut_in_on
;
ineighn
=
(
ineigh
=
list
->
ilist
)
+
list
->
inum
;
for
(;
ineigh
<
ineighn
;
++
ineigh
)
{
// loop over my atoms
i
=
*
ineigh
;
fi
=
f0
+
3
*
i
;
if
(
order1
)
qri
=
(
qi
=
q
[
i
])
*
qqrd2e
;
// initialize constants
offseti
=
offset
[
typei
=
type
[
i
]];
lj1i
=
lj1
[
typei
];
lj2i
=
lj2
[
typei
];
lj3i
=
lj3
[
typei
];
lj4i
=
lj4
[
typei
];
cutsqi
=
cutsq
[
typei
];
cut_ljsqi
=
cut_ljsq
[
typei
];
memcpy
(
xi
,
x0
+
(
i
+
(
i
<<
1
)),
sizeof
(
vector
));
jneighn
=
(
jneigh
=
list
->
firstneigh
[
i
])
+
list
->
numneigh
[
i
];
for
(;
jneigh
<
jneighn
;
++
jneigh
)
{
// loop over neighbors
j
=
*
jneigh
;
ni
=
sbmask
(
j
);
j
&=
NEIGHMASK
;
{
register
double
*
xj
=
x0
+
(
j
+
(
j
<<
1
));
d
[
0
]
=
xi
[
0
]
-
xj
[
0
];
// pair vector
d
[
1
]
=
xi
[
1
]
-
xj
[
1
];
d
[
2
]
=
xi
[
2
]
-
xj
[
2
];
}
if
((
rsq
=
vec_dot
(
d
,
d
))
>=
cutsqi
[
typej
=
type
[
j
]])
continue
;
r2inv
=
1.0
/
rsq
;
if
((
respa_flag
=
(
rsq
>
cut_in_off_sq
)
&&
(
rsq
<
cut_in_on_sq
)))
{
register
double
rsw
=
(
sqrt
(
rsq
)
-
cut_in_off
)
/
cut_in_diff
;
frespa
=
rsw
*
rsw
*
(
3.0
-
2.0
*
rsw
);
}
if
(
order1
&&
(
rsq
<
cut_coulsq
))
{
// coulombic
if
(
!
ncoultablebits
||
rsq
<=
tabinnersq
)
{
// series real space
register
double
r
=
sqrt
(
rsq
),
s
=
qri
*
q
[
j
];
if
(
respa_flag
)
// correct for respa
respa_coul
=
ni
==
0
?
frespa
*
s
/
r
:
frespa
*
s
/
r
*
special_coul
[
ni
];
register
double
x
=
g_ewald
*
r
,
t
=
1.0
/
(
1.0
+
EWALD_P
*
x
);
if
(
ni
==
0
)
{
s
*=
g_ewald
*
exp
(
-
x
*
x
);
force_coul
=
(
t
*=
((((
t
*
A5
+
A4
)
*
t
+
A3
)
*
t
+
A2
)
*
t
+
A1
)
*
s
/
x
)
+
EWALD_F
*
s
;
if
(
eflag
)
ecoul
=
t
;
}
else
{
// correct for special
r
=
s
*
(
1.0
-
special_coul
[
ni
])
/
r
;
s
*=
g_ewald
*
exp
(
-
x
*
x
);
force_coul
=
(
t
*=
((((
t
*
A5
+
A4
)
*
t
+
A3
)
*
t
+
A2
)
*
t
+
A1
)
*
s
/
x
)
+
EWALD_F
*
s
-
r
;
if
(
eflag
)
ecoul
=
t
-
r
;
}
}
// table real space
else
{
if
(
respa_flag
)
respa_coul
=
ni
==
0
?
// correct for respa
frespa
*
qri
*
q
[
j
]
/
sqrt
(
rsq
)
:
frespa
*
qri
*
q
[
j
]
/
sqrt
(
rsq
)
*
special_coul
[
ni
];
register
union_int_float_t
t
;
t
.
f
=
rsq
;
register
const
int
k
=
(
t
.
i
&
ncoulmask
)
>>
ncoulshiftbits
;
register
double
f
=
(
rsq
-
rtable
[
k
])
*
drtable
[
k
],
qiqj
=
qi
*
q
[
j
];
if
(
ni
==
0
)
{
force_coul
=
qiqj
*
(
ftable
[
k
]
+
f
*
dftable
[
k
]);
if
(
eflag
)
ecoul
=
qiqj
*
(
etable
[
k
]
+
f
*
detable
[
k
]);
}
else
{
// correct for special
t
.
f
=
(
1.0
-
special_coul
[
ni
])
*
(
ctable
[
k
]
+
f
*
dctable
[
k
]);
force_coul
=
qiqj
*
(
ftable
[
k
]
+
f
*
dftable
[
k
]
-
t
.
f
);
if
(
eflag
)
ecoul
=
qiqj
*
(
etable
[
k
]
+
f
*
detable
[
k
]
-
t
.
f
);
}
}
}
else
force_coul
=
respa_coul
=
ecoul
=
0.0
;
if
(
rsq
<
cut_ljsqi
[
typej
])
{
// lennard-jones
register
double
rn
=
r2inv
*
r2inv
*
r2inv
;
if
(
respa_flag
)
respa_lj
=
ni
==
0
?
// correct for respa
frespa
*
rn
*
(
rn
*
lj1i
[
typej
]
-
lj2i
[
typej
])
:
frespa
*
rn
*
(
rn
*
lj1i
[
typej
]
-
lj2i
[
typej
])
*
special_lj
[
ni
];
if
(
order6
)
{
// long-range form
register
double
x2
=
g2
*
rsq
,
a2
=
1.0
/
x2
;
x2
=
a2
*
exp
(
-
x2
)
*
lj4i
[
typej
];
if
(
ni
==
0
)
{
force_lj
=
(
rn
*=
rn
)
*
lj1i
[
typej
]
-
g8
*
(((
6.0
*
a2
+
6.0
)
*
a2
+
3.0
)
*
a2
+
1.0
)
*
x2
*
rsq
;
if
(
eflag
)
evdwl
=
rn
*
lj3i
[
typej
]
-
g6
*
((
a2
+
1.0
)
*
a2
+
0.5
)
*
x2
;
}
else
{
// correct for special
register
double
f
=
special_lj
[
ni
],
t
=
rn
*
(
1.0
-
f
);
force_lj
=
f
*
(
rn
*=
rn
)
*
lj1i
[
typej
]
-
g8
*
(((
6.0
*
a2
+
6.0
)
*
a2
+
3.0
)
*
a2
+
1.0
)
*
x2
*
rsq
+
t
*
lj2i
[
typej
];
if
(
eflag
)
evdwl
=
f
*
rn
*
lj3i
[
typej
]
-
g6
*
((
a2
+
1.0
)
*
a2
+
0.5
)
*
x2
+
t
*
lj4i
[
typej
];
}
}
else
{
// cut form
if
(
ni
==
0
)
{
force_lj
=
rn
*
(
rn
*
lj1i
[
typej
]
-
lj2i
[
typej
]);
if
(
eflag
)
evdwl
=
rn
*
(
rn
*
lj3i
[
typej
]
-
lj4i
[
typej
])
-
offseti
[
typej
];
}
else
{
// correct for special
register
double
f
=
special_lj
[
ni
];
force_lj
=
f
*
rn
*
(
rn
*
lj1i
[
typej
]
-
lj2i
[
typej
]);
if
(
eflag
)
evdwl
=
f
*
(
rn
*
(
rn
*
lj3i
[
typej
]
-
lj4i
[
typej
])
-
offseti
[
typej
]);
}
}
}
else
force_lj
=
respa_lj
=
evdwl
=
0.0
;
fpair
=
(
force_coul
+
force_lj
)
*
r2inv
;
frespa
=
fpair
-
(
respa_coul
+
respa_lj
)
*
r2inv
;
if
(
newton_pair
||
j
<
nlocal
)
{
register
double
*
fj
=
f0
+
(
j
+
(
j
<<
1
)),
f
;
fi
[
0
]
+=
f
=
d
[
0
]
*
frespa
;
fj
[
0
]
-=
f
;
fi
[
1
]
+=
f
=
d
[
1
]
*
frespa
;
fj
[
1
]
-=
f
;
fi
[
2
]
+=
f
=
d
[
2
]
*
frespa
;
fj
[
2
]
-=
f
;
}
else
{
fi
[
0
]
+=
d
[
0
]
*
frespa
;
fi
[
1
]
+=
d
[
1
]
*
frespa
;
fi
[
2
]
+=
d
[
2
]
*
frespa
;
}
if
(
evflag
)
ev_tally
(
i
,
j
,
nlocal
,
newton_pair
,
evdwl
,
ecoul
,
fpair
,
d
[
0
],
d
[
1
],
d
[
2
]);
}
}
}
/* ----------------------------------------------------------------------
setup force tables used in compute routines
------------------------------------------------------------------------- */
void
PairLJCoul
::
init_tables
()
{
int
masklo
,
maskhi
;
double
r
,
grij
,
expm2
,
derfc
,
rsw
;
double
qqrd2e
=
force
->
qqrd2e
;
tabinnersq
=
tabinner
*
tabinner
;
init_bitmap
(
tabinner
,
cut_coul
,
ncoultablebits
,
masklo
,
maskhi
,
ncoulmask
,
ncoulshiftbits
);
int
ntable
=
1
;
for
(
int
i
=
0
;
i
<
ncoultablebits
;
i
++
)
ntable
*=
2
;
// linear lookup tables of length N = 2^ncoultablebits
// stored value = value at lower edge of bin
// d values = delta from lower edge to upper edge of bin
if
(
ftable
)
free_tables
();
memory
->
create
(
rtable
,
ntable
,
"pair:rtable"
);
memory
->
create
(
ftable
,
ntable
,
"pair:ftable"
);
memory
->
create
(
ctable
,
ntable
,
"pair:ctable"
);
memory
->
create
(
etable
,
ntable
,
"pair:etable"
);
memory
->
create
(
drtable
,
ntable
,
"pair:drtable"
);
memory
->
create
(
dftable
,
ntable
,
"pair:dftable"
);
memory
->
create
(
dctable
,
ntable
,
"pair:dctable"
);
memory
->
create
(
detable
,
ntable
,
"pair:detable"
);
if
(
cut_respa
==
NULL
)
{
vtable
=
ptable
=
dvtable
=
dptable
=
NULL
;
}
else
{
memory
->
create
(
vtable
,
ntable
,
"pair:vtable"
);
memory
->
create
(
ptable
,
ntable
,
"pair:ptable"
);
memory
->
create
(
dvtable
,
ntable
,
"pair:dvtable"
);
memory
->
create
(
dptable
,
ntable
,
"pair:dptable"
);
}
union_int_float_t
rsq_lookup
;
union_int_float_t
minrsq_lookup
;
int
itablemin
;
minrsq_lookup
.
i
=
0
<<
ncoulshiftbits
;
minrsq_lookup
.
i
|=
maskhi
;
for
(
int
i
=
0
;
i
<
ntable
;
i
++
)
{
rsq_lookup
.
i
=
i
<<
ncoulshiftbits
;
rsq_lookup
.
i
|=
masklo
;
if
(
rsq_lookup
.
f
<
tabinnersq
)
{
rsq_lookup
.
i
=
i
<<
ncoulshiftbits
;
rsq_lookup
.
i
|=
maskhi
;
}
r
=
sqrtf
(
rsq_lookup
.
f
);
grij
=
g_ewald
*
r
;
expm2
=
exp
(
-
grij
*
grij
);
derfc
=
erfc
(
grij
);
if
(
cut_respa
==
NULL
)
{
rtable
[
i
]
=
rsq_lookup
.
f
;
ftable
[
i
]
=
qqrd2e
/
r
*
(
derfc
+
EWALD_F
*
grij
*
expm2
);
ctable
[
i
]
=
qqrd2e
/
r
;
etable
[
i
]
=
qqrd2e
/
r
*
derfc
;
}
else
{
rtable
[
i
]
=
rsq_lookup
.
f
;
ftable
[
i
]
=
qqrd2e
/
r
*
(
derfc
+
EWALD_F
*
grij
*
expm2
-
1.0
);
ctable
[
i
]
=
0.0
;
etable
[
i
]
=
qqrd2e
/
r
*
derfc
;
ptable
[
i
]
=
qqrd2e
/
r
;
vtable
[
i
]
=
qqrd2e
/
r
*
(
derfc
+
EWALD_F
*
grij
*
expm2
);
if
(
rsq_lookup
.
f
>
cut_respa
[
2
]
*
cut_respa
[
2
])
{
if
(
rsq_lookup
.
f
<
cut_respa
[
3
]
*
cut_respa
[
3
])
{
rsw
=
(
r
-
cut_respa
[
2
])
/
(
cut_respa
[
3
]
-
cut_respa
[
2
]);
ftable
[
i
]
+=
qqrd2e
/
r
*
rsw
*
rsw
*
(
3.0
-
2.0
*
rsw
);
ctable
[
i
]
=
qqrd2e
/
r
*
rsw
*
rsw
*
(
3.0
-
2.0
*
rsw
);
}
else
{
ftable
[
i
]
=
qqrd2e
/
r
*
(
derfc
+
EWALD_F
*
grij
*
expm2
);
ctable
[
i
]
=
qqrd2e
/
r
;
}
}
}
minrsq_lookup
.
f
=
MIN
(
minrsq_lookup
.
f
,
rsq_lookup
.
f
);
}
tabinnersq
=
minrsq_lookup
.
f
;
int
ntablem1
=
ntable
-
1
;
for
(
int
i
=
0
;
i
<
ntablem1
;
i
++
)
{
drtable
[
i
]
=
1.0
/
(
rtable
[
i
+
1
]
-
rtable
[
i
]);
dftable
[
i
]
=
ftable
[
i
+
1
]
-
ftable
[
i
];
dctable
[
i
]
=
ctable
[
i
+
1
]
-
ctable
[
i
];
detable
[
i
]
=
etable
[
i
+
1
]
-
etable
[
i
];
}
if
(
cut_respa
)
{
for
(
int
i
=
0
;
i
<
ntablem1
;
i
++
)
{
dvtable
[
i
]
=
vtable
[
i
+
1
]
-
vtable
[
i
];
dptable
[
i
]
=
ptable
[
i
+
1
]
-
ptable
[
i
];
}
}
// get the delta values for the last table entries
// tables are connected periodically between 0 and ntablem1
drtable
[
ntablem1
]
=
1.0
/
(
rtable
[
0
]
-
rtable
[
ntablem1
]);
dftable
[
ntablem1
]
=
ftable
[
0
]
-
ftable
[
ntablem1
];
dctable
[
ntablem1
]
=
ctable
[
0
]
-
ctable
[
ntablem1
];
detable
[
ntablem1
]
=
etable
[
0
]
-
etable
[
ntablem1
];
if
(
cut_respa
)
{
dvtable
[
ntablem1
]
=
vtable
[
0
]
-
vtable
[
ntablem1
];
dptable
[
ntablem1
]
=
ptable
[
0
]
-
ptable
[
ntablem1
];
}
// get the correct delta values at itablemax
// smallest r is in bin itablemin
// largest r is in bin itablemax, which is itablemin-1,
// or ntablem1 if itablemin=0
// deltas at itablemax only needed if corresponding rsq < cut*cut
// if so, compute deltas between rsq and cut*cut
double
f_tmp
,
c_tmp
,
e_tmp
,
p_tmp
,
v_tmp
;
itablemin
=
minrsq_lookup
.
i
&
ncoulmask
;
itablemin
>>=
ncoulshiftbits
;
int
itablemax
=
itablemin
-
1
;
if
(
itablemin
==
0
)
itablemax
=
ntablem1
;
rsq_lookup
.
i
=
itablemax
<<
ncoulshiftbits
;
rsq_lookup
.
i
|=
maskhi
;
if
(
rsq_lookup
.
f
<
cut_coulsq
)
{
rsq_lookup
.
f
=
cut_coulsq
;
r
=
sqrtf
(
rsq_lookup
.
f
);
grij
=
g_ewald
*
r
;
expm2
=
exp
(
-
grij
*
grij
);
derfc
=
erfc
(
grij
);
if
(
cut_respa
==
NULL
)
{
f_tmp
=
qqrd2e
/
r
*
(
derfc
+
EWALD_F
*
grij
*
expm2
);
c_tmp
=
qqrd2e
/
r
;
e_tmp
=
qqrd2e
/
r
*
derfc
;
}
else
{
f_tmp
=
qqrd2e
/
r
*
(
derfc
+
EWALD_F
*
grij
*
expm2
-
1.0
);
c_tmp
=
0.0
;
e_tmp
=
qqrd2e
/
r
*
derfc
;
p_tmp
=
qqrd2e
/
r
;
v_tmp
=
qqrd2e
/
r
*
(
derfc
+
EWALD_F
*
grij
*
expm2
);
if
(
rsq_lookup
.
f
>
cut_respa
[
2
]
*
cut_respa
[
2
])
{
if
(
rsq_lookup
.
f
<
cut_respa
[
3
]
*
cut_respa
[
3
])
{
rsw
=
(
r
-
cut_respa
[
2
])
/
(
cut_respa
[
3
]
-
cut_respa
[
2
]);
f_tmp
+=
qqrd2e
/
r
*
rsw
*
rsw
*
(
3.0
-
2.0
*
rsw
);
c_tmp
=
qqrd2e
/
r
*
rsw
*
rsw
*
(
3.0
-
2.0
*
rsw
);
}
else
{
f_tmp
=
qqrd2e
/
r
*
(
derfc
+
EWALD_F
*
grij
*
expm2
);
c_tmp
=
qqrd2e
/
r
;
}
}
}
drtable
[
itablemax
]
=
1.0
/
(
rsq_lookup
.
f
-
rtable
[
itablemax
]);
dftable
[
itablemax
]
=
f_tmp
-
ftable
[
itablemax
];
dctable
[
itablemax
]
=
c_tmp
-
ctable
[
itablemax
];
detable
[
itablemax
]
=
e_tmp
-
etable
[
itablemax
];
if
(
cut_respa
)
{
dvtable
[
itablemax
]
=
v_tmp
-
vtable
[
itablemax
];
dptable
[
itablemax
]
=
p_tmp
-
ptable
[
itablemax
];
}
}
}
/* ----------------------------------------------------------------------
free memory for tables used in pair computations
------------------------------------------------------------------------- */
void
PairLJCoul
::
free_tables
()
{
memory
->
destroy
(
rtable
);
memory
->
destroy
(
drtable
);
memory
->
destroy
(
ftable
);
memory
->
destroy
(
dftable
);
memory
->
destroy
(
ctable
);
memory
->
destroy
(
dctable
);
memory
->
destroy
(
etable
);
memory
->
destroy
(
detable
);
memory
->
destroy
(
vtable
);
memory
->
destroy
(
dvtable
);
memory
->
destroy
(
ptable
);
memory
->
destroy
(
dptable
);
}
/* ---------------------------------------------------------------------- */
double
PairLJCoul
::
single
(
int
i
,
int
j
,
int
itype
,
int
jtype
,
double
rsq
,
double
factor_coul
,
double
factor_lj
,
double
&
fforce
)
{
double
r2inv
,
r6inv
,
force_coul
,
force_lj
;
double
g2
=
g_ewald
*
g_ewald
,
g6
=
g2
*
g2
*
g2
,
g8
=
g6
*
g2
,
*
q
=
atom
->
q
;
double
eng
=
0.0
;
r2inv
=
1.0
/
rsq
;
if
((
ewald_order
&
2
)
&&
(
rsq
<
cut_coulsq
))
{
// coulombic
if
(
!
ncoultablebits
||
rsq
<=
tabinnersq
)
{
// series real space
register
double
r
=
sqrt
(
rsq
),
x
=
g_ewald
*
r
;
register
double
s
=
force
->
qqrd2e
*
q
[
i
]
*
q
[
j
],
t
=
1.0
/
(
1.0
+
EWALD_P
*
x
);
r
=
s
*
(
1.0
-
factor_coul
)
/
r
;
s
*=
g_ewald
*
exp
(
-
x
*
x
);
force_coul
=
(
t
*=
((((
t
*
A5
+
A4
)
*
t
+
A3
)
*
t
+
A2
)
*
t
+
A1
)
*
s
/
x
)
+
EWALD_F
*
s
-
r
;
eng
+=
t
-
r
;
}
else
{
// table real space
register
union_int_float_t
t
;
t
.
f
=
rsq
;
register
const
int
k
=
(
t
.
i
&
ncoulmask
)
>>
ncoulshiftbits
;
register
double
f
=
(
rsq
-
rtable
[
k
])
*
drtable
[
k
],
qiqj
=
q
[
i
]
*
q
[
j
];
t
.
f
=
(
1.0
-
factor_coul
)
*
(
ctable
[
k
]
+
f
*
dctable
[
k
]);
force_coul
=
qiqj
*
(
ftable
[
k
]
+
f
*
dftable
[
k
]
-
t
.
f
);
eng
+=
qiqj
*
(
etable
[
k
]
+
f
*
detable
[
k
]
-
t
.
f
);
}
}
else
force_coul
=
0.0
;
if
(
rsq
<
cut_ljsq
[
itype
][
jtype
])
{
// lennard-jones
r6inv
=
r2inv
*
r2inv
*
r2inv
;
if
(
ewald_order
&
64
)
{
// long-range
register
double
x2
=
g2
*
rsq
,
a2
=
1.0
/
x2
,
t
=
r6inv
*
(
1.0
-
factor_lj
);
x2
=
a2
*
exp
(
-
x2
)
*
lj4
[
itype
][
jtype
];
force_lj
=
factor_lj
*
(
r6inv
*=
r6inv
)
*
lj1
[
itype
][
jtype
]
-
g8
*
(((
6.0
*
a2
+
6.0
)
*
a2
+
3.0
)
*
a2
+
a2
)
*
x2
*
rsq
+
t
*
lj2
[
itype
][
jtype
];
eng
+=
factor_lj
*
r6inv
*
lj3
[
itype
][
jtype
]
-
g6
*
((
a2
+
1.0
)
*
a2
+
0.5
)
*
x2
+
t
*
lj4
[
itype
][
jtype
];
}
else
{
// cut
force_lj
=
factor_lj
*
r6inv
*
(
lj1
[
itype
][
jtype
]
*
r6inv
-
lj2
[
itype
][
jtype
]);
eng
+=
factor_lj
*
(
r6inv
*
(
r6inv
*
lj3
[
itype
][
jtype
]
-
lj4
[
itype
][
jtype
])
-
offset
[
itype
][
jtype
]);
}
}
else
force_lj
=
0.0
;
fforce
=
(
force_coul
+
force_lj
)
*
r2inv
;
return
eng
;
}
Event Timeline
Log In to Comment