Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F99605383
dihedral_helix_omp.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Jan 25, 17:45
Size
11 KB
Mime Type
text/x-c++
Expires
Mon, Jan 27, 17:45 (2 d)
Engine
blob
Format
Raw Data
Handle
23831556
Attached To
rLAMMPS lammps
dihedral_helix_omp.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing authors: Naveen Michaud-Agrawal (Johns Hopkins U) and
Mark Stevens (Sandia)
------------------------------------------------------------------------- */
#include "math.h"
#include "stdlib.h"
#include "mpi.h"
#include "dihedral_helix_omp.h"
#include "atom.h"
#include "neighbor.h"
#include "domain.h"
#include "comm.h"
#include "force.h"
#include "update.h"
#include "memory.h"
#include "error.h"
#if defined(_OPENMP)
#include <omp.h>
#endif
using namespace LAMMPS_NS;
#define MIN(A,B) ((A) < (B)) ? (A) : (B)
#define MAX(A,B) ((A) > (B)) ? (A) : (B)
#define TOLERANCE 0.05
#define SMALL 0.001
#define SMALLER 0.00001
/* ---------------------------------------------------------------------- */
DihedralHelixOMP::DihedralHelixOMP(LAMMPS *lmp) : DihedralOMP(lmp) {}
/* ---------------------------------------------------------------------- */
DihedralHelixOMP::~DihedralHelixOMP()
{
if (allocated) {
memory->sfree(setflag);
memory->sfree(aphi);
memory->sfree(bphi);
memory->sfree(cphi);
}
}
/* ---------------------------------------------------------------------- */
void DihedralHelixOMP::compute(int eflag, int vflag)
{
if (eflag || vflag) {
ev_setup(eflag,vflag);
ev_setup_thr(eflag,vflag);
} else evflag = 0;
if (evflag) {
if (eflag) {
if (force->newton_bond) return eval<1,1,1>();
else return eval<1,1,0>();
} else {
if (force->newton_bond) return eval<1,0,1>();
else return eval<1,0,0>();
}
} else {
if (force->newton_bond) return eval<0,0,1>();
else return eval<0,0,0>();
}
}
template <int EVFLAG, int EFLAG, int NEWTON_BOND>
void DihedralHelixOMP::eval()
{
#if defined(_OPENMP)
#pragma omp parallel default(shared)
#endif
{
int i1,i2,i3,i4,n,type,tid;
double vb1x,vb1y,vb1z,vb2x,vb2y,vb2z,vb3x,vb3y,vb3z,vb2xm,vb2ym,vb2zm;
double edihedral,f1[3],f2[3],f3[3],f4[3];
double sb1,sb2,sb3,rb1,rb3,c0,b1mag2,b1mag,b2mag2;
double b2mag,b3mag2,b3mag,ctmp,r12c1,c1mag,r12c2;
double c2mag,sc1,sc2,s1,s12,c,p,pd,a,a11,a22;
double a33,a12,a13,a23,sx2,sy2,sz2;
double s2,cx,cy,cz,cmag,dx,phi,si,siinv,sin2;
edihedral = 0.0;
const int nlocal = atom->nlocal;
const int nall = nlocal + atom->nghost;
const int nthreads = comm->nthreads;
double **x = atom->x;
double **f = atom->f;
int **dihedrallist = neighbor->dihedrallist;
int ndihedrallist = neighbor->ndihedrallist;
int newton_bond = force->newton_bond;
double qqrd2e = force->qqrd2e;
// loop over neighbors of my atoms
int nnfrom, nnto;
f = loop_setup_thr(f, nnfrom, nnto, tid, ndihedrallist, nall, nthreads);
for (n = nnfrom; n < nnto; ++n) {
i1 = dihedrallist[n][0];
i2 = dihedrallist[n][1];
i3 = dihedrallist[n][2];
i4 = dihedrallist[n][3];
type = dihedrallist[n][4];
// 1st bond
vb1x = x[i1][0] - x[i2][0];
vb1y = x[i1][1] - x[i2][1];
vb1z = x[i1][2] - x[i2][2];
domain->minimum_image(vb1x,vb1y,vb1z);
// 2nd bond
vb2x = x[i3][0] - x[i2][0];
vb2y = x[i3][1] - x[i2][1];
vb2z = x[i3][2] - x[i2][2];
domain->minimum_image(vb2x,vb2y,vb2z);
vb2xm = -vb2x;
vb2ym = -vb2y;
vb2zm = -vb2z;
domain->minimum_image(vb2xm,vb2ym,vb2zm);
// 3rd bond
vb3x = x[i4][0] - x[i3][0];
vb3y = x[i4][1] - x[i3][1];
vb3z = x[i4][2] - x[i3][2];
domain->minimum_image(vb3x,vb3y,vb3z);
// c0 calculation
sb1 = 1.0 / (vb1x*vb1x + vb1y*vb1y + vb1z*vb1z);
sb2 = 1.0 / (vb2x*vb2x + vb2y*vb2y + vb2z*vb2z);
sb3 = 1.0 / (vb3x*vb3x + vb3y*vb3y + vb3z*vb3z);
rb1 = sqrt(sb1);
rb3 = sqrt(sb3);
c0 = (vb1x*vb3x + vb1y*vb3y + vb1z*vb3z) * rb1*rb3;
// 1st and 2nd angle
b1mag2 = vb1x*vb1x + vb1y*vb1y + vb1z*vb1z;
b1mag = sqrt(b1mag2);
b2mag2 = vb2x*vb2x + vb2y*vb2y + vb2z*vb2z;
b2mag = sqrt(b2mag2);
b3mag2 = vb3x*vb3x + vb3y*vb3y + vb3z*vb3z;
b3mag = sqrt(b3mag2);
ctmp = vb1x*vb2x + vb1y*vb2y + vb1z*vb2z;
r12c1 = 1.0 / (b1mag*b2mag);
c1mag = ctmp * r12c1;
ctmp = vb2xm*vb3x + vb2ym*vb3y + vb2zm*vb3z;
r12c2 = 1.0 / (b2mag*b3mag);
c2mag = ctmp * r12c2;
// cos and sin of 2 angles and final c
sin2 = MAX(1.0 - c1mag*c1mag,0.0);
sc1 = sqrt(sin2);
if (sc1 < SMALL) sc1 = SMALL;
sc1 = 1.0/sc1;
sin2 = MAX(1.0 - c2mag*c2mag,0.0);
sc2 = sqrt(sin2);
if (sc2 < SMALL) sc2 = SMALL;
sc2 = 1.0/sc2;
s1 = sc1 * sc1;
s2 = sc2 * sc2;
s12 = sc1 * sc2;
c = (c0 + c1mag*c2mag) * s12;
cx = vb1y*vb2z - vb1z*vb2y;
cy = vb1z*vb2x - vb1x*vb2z;
cz = vb1x*vb2y - vb1y*vb2x;
cmag = sqrt(cx*cx + cy*cy + cz*cz);
dx = (cx*vb3x + cy*vb3y + cz*vb3z)/cmag/b3mag;
// error check
if (c > 1.0 + TOLERANCE || c < (-1.0 - TOLERANCE)) {
int me;
MPI_Comm_rank(world,&me);
if (screen) {
char str[128];
sprintf(str,"Dihedral problem: %d %d %d %d %d %d",
me,update->ntimestep,
atom->tag[i1],atom->tag[i2],atom->tag[i3],atom->tag[i4]);
error->warning(str);
fprintf(screen," 1st atom: %d %g %g %g\n",
me,x[i1][0],x[i1][1],x[i1][2]);
fprintf(screen," 2nd atom: %d %g %g %g\n",
me,x[i2][0],x[i2][1],x[i2][2]);
fprintf(screen," 3rd atom: %d %g %g %g\n",
me,x[i3][0],x[i3][1],x[i3][2]);
fprintf(screen," 4th atom: %d %g %g %g\n",
me,x[i4][0],x[i4][1],x[i4][2]);
}
}
if (c > 1.0) c = 1.0;
if (c < -1.0) c = -1.0;
phi = acos(c);
if (dx < 0.0) phi *= -1.0;
si = sin(phi);
if (fabs(si) < SMALLER) si = SMALLER;
siinv = 1.0/si;
p = aphi[type]*(1.0 - c) + bphi[type]*(1.0 + cos(3.0*phi)) +
cphi[type]*(1.0 + cos(phi + 0.25*PI));
pd = -aphi[type] + 3.0*bphi[type]*sin(3.0*phi)*siinv +
cphi[type]*sin(phi + 0.25*PI)*siinv;
if (EFLAG) edihedral = p;
a = pd;
c = c * a;
s12 = s12 * a;
a11 = c*sb1*s1;
a22 = -sb2 * (2.0*c0*s12 - c*(s1+s2));
a33 = c*sb3*s2;
a12 = -r12c1 * (c1mag*c*s1 + c2mag*s12);
a13 = -rb1*rb3*s12;
a23 = r12c2 * (c2mag*c*s2 + c1mag*s12);
sx2 = a12*vb1x + a22*vb2x + a23*vb3x;
sy2 = a12*vb1y + a22*vb2y + a23*vb3y;
sz2 = a12*vb1z + a22*vb2z + a23*vb3z;
f1[0] = a11*vb1x + a12*vb2x + a13*vb3x;
f1[1] = a11*vb1y + a12*vb2y + a13*vb3y;
f1[2] = a11*vb1z + a12*vb2z + a13*vb3z;
f2[0] = -sx2 - f1[0];
f2[1] = -sy2 - f1[1];
f2[2] = -sz2 - f1[2];
f4[0] = a13*vb1x + a23*vb2x + a33*vb3x;
f4[1] = a13*vb1y + a23*vb2y + a33*vb3y;
f4[2] = a13*vb1z + a23*vb2z + a33*vb3z;
f3[0] = sx2 - f4[0];
f3[1] = sy2 - f4[1];
f3[2] = sz2 - f4[2];
// apply force to each of 4 atoms
if (NEWTON_BOND || i1 < nlocal) {
f[i1][0] += f1[0];
f[i1][1] += f1[1];
f[i1][2] += f1[2];
}
if (NEWTON_BOND || i2 < nlocal) {
f[i2][0] += f2[0];
f[i2][1] += f2[1];
f[i2][2] += f2[2];
}
if (NEWTON_BOND || i3 < nlocal) {
f[i3][0] += f3[0];
f[i3][1] += f3[1];
f[i3][2] += f3[2];
}
if (NEWTON_BOND || i4 < nlocal) {
f[i4][0] += f4[0];
f[i4][1] += f4[1];
f[i4][2] += f4[2];
}
if (EVFLAG) ev_tally_thr(i1,i2,i3,i4,nlocal,NEWTON_BOND,edihedral,f1,f3,f4,
vb1x,vb1y,vb1z,vb2x,vb2y,vb2z,vb3x,vb3y,vb3z,tid);
}
force_reduce_thr(atom->f, nall, nthreads, tid);
}
ev_reduce_thr();
}
/* ---------------------------------------------------------------------- */
void DihedralHelixOMP::allocate()
{
allocated = 1;
int n = atom->ndihedraltypes;
aphi = (double *) memory->smalloc((n+1)*sizeof(double),"dihedral:aphi");
bphi = (double *) memory->smalloc((n+1)*sizeof(double),"dihedral:bphi");
cphi = (double *) memory->smalloc((n+1)*sizeof(double),"dihedral:cphi");
setflag = (int *) memory->smalloc((n+1)*sizeof(int),"dihedral:setflag");
for (int i = 1; i <= n; i++) setflag[i] = 0;
}
/* ----------------------------------------------------------------------
set coeffs from one line in input script
------------------------------------------------------------------------- */
void DihedralHelixOMP::coeff(int which, int narg, char **arg)
{
if (which > 0) return;
if (narg != 4) error->all("Incorrect args for dihedral coefficients");
if (!allocated) allocate();
int ilo,ihi;
force->bounds(arg[0],atom->ndihedraltypes,ilo,ihi);
double aphi_one = force->numeric(arg[1]);
double bphi_one = force->numeric(arg[2]);
double cphi_one = force->numeric(arg[3]);
int count = 0;
for (int i = ilo; i <= ihi; i++) {
aphi[i] = aphi_one;
bphi[i] = bphi_one;
cphi[i] = cphi_one;
setflag[i] = 1;
count++;
}
if (count == 0) error->all("Incorrect args for dihedral coefficients");
}
/* ----------------------------------------------------------------------
proc 0 writes out coeffs to restart file
------------------------------------------------------------------------- */
void DihedralHelixOMP::write_restart(FILE *fp)
{
fwrite(&aphi[1],sizeof(double),atom->ndihedraltypes,fp);
fwrite(&bphi[1],sizeof(double),atom->ndihedraltypes,fp);
fwrite(&cphi[1],sizeof(double),atom->ndihedraltypes,fp);
}
/* ----------------------------------------------------------------------
proc 0 reads coeffs from restart file, bcasts them
------------------------------------------------------------------------- */
void DihedralHelixOMP::read_restart(FILE *fp)
{
allocate();
if (comm->me == 0) {
fread(&aphi[1],sizeof(double),atom->ndihedraltypes,fp);
fread(&bphi[1],sizeof(double),atom->ndihedraltypes,fp);
fread(&cphi[1],sizeof(double),atom->ndihedraltypes,fp);
}
MPI_Bcast(&aphi[1],atom->ndihedraltypes,MPI_DOUBLE,0,world);
MPI_Bcast(&bphi[1],atom->ndihedraltypes,MPI_DOUBLE,0,world);
MPI_Bcast(&cphi[1],atom->ndihedraltypes,MPI_DOUBLE,0,world);
for (int i = 1; i <= atom->ndihedraltypes; i++) setflag[i] = 1;
}
/* ---------------------------------------------------------------------- */
double DihedralHelixOMP::memory_usage()
{
const int n=atom->ntypes;
double bytes = DihedralOMP::memory_usage();
bytes += 9*((n+1)*(n+1) * sizeof(double) + (n+1)*sizeof(double *));
bytes += 1*((n+1)*(n+1) * sizeof(int) + (n+1)*sizeof(int *));
return bytes;
}
Event Timeline
Log In to Comment