Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F115086491
fix_ttm.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, May 29, 17:12
Size
22 KB
Mime Type
text/x-c
Expires
Sat, May 31, 17:12 (2 d)
Engine
blob
Format
Raw Data
Handle
26442406
Attached To
rLAMMPS lammps
fix_ttm.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing authors: Paul Crozier (SNL)
Carolyn Phillips (University of Michigan)
------------------------------------------------------------------------- */
#include "lmptype.h"
#include "mpi.h"
#include "math.h"
#include "string.h"
#include "stdlib.h"
#include "fix_ttm.h"
#include "atom.h"
#include "force.h"
#include "update.h"
#include "domain.h"
#include "region.h"
#include "respa.h"
#include "comm.h"
#include "random_mars.h"
#include "memory.h"
#include "error.h"
using namespace LAMMPS_NS;
using namespace FixConst;
#define MAXLINE 1024
/* ---------------------------------------------------------------------- */
FixTTM::FixTTM(LAMMPS *lmp, int narg, char **arg) :
Fix(lmp, narg, arg)
{
if (narg < 15) error->all(FLERR,"Illegal fix ttm command");
vector_flag = 1;
size_vector = 2;
global_freq = 1;
extvector = 1;
nevery = 1;
restart_peratom = 1;
restart_global = 1;
seed = atoi(arg[3]);
electronic_specific_heat = atof(arg[4]);
electronic_density = atof(arg[5]);
electronic_thermal_conductivity = atof(arg[6]);
gamma_p = atof(arg[7]);
gamma_s = atof(arg[8]);
v_0 = atof(arg[9]);
nxnodes = atoi(arg[10]);
nynodes = atoi(arg[11]);
nznodes = atoi(arg[12]);
fpr = fopen(arg[13],"r");
if (fpr == NULL) {
char str[128];
sprintf(str,"Cannot open file %s",arg[13]);
error->one(FLERR,str);
}
nfileevery = atoi(arg[14]);
if (nfileevery) {
if (narg != 16) error->all(FLERR,"Illegal fix ttm command");
MPI_Comm_rank(world,&me);
if (me == 0) {
fp = fopen(arg[15],"w");
if (fp == NULL) {
char str[128];
sprintf(str,"Cannot open fix ttm file %s",arg[15]);
error->one(FLERR,str);
}
}
}
// error check
if (seed <= 0) error->all(FLERR,"Invalid random number seed in fix ttm command");
if (electronic_specific_heat <= 0.0)
error->all(FLERR,"Fix ttm electronic_specific_heat must be > 0.0");
if (electronic_density <= 0.0)
error->all(FLERR,"Fix ttm electronic_density must be > 0.0");
if (electronic_thermal_conductivity < 0.0)
error->all(FLERR,"Fix ttm electronic_thermal_conductivity must be >= 0.0");
if (gamma_p <= 0.0) error->all(FLERR,"Fix ttm gamma_p must be > 0.0");
if (gamma_s < 0.0) error->all(FLERR,"Fix ttm gamma_s must be >= 0.0");
if (v_0 < 0.0) error->all(FLERR,"Fix ttm v_0 must be >= 0.0");
if (nxnodes <= 0 || nynodes <= 0 || nznodes <= 0)
error->all(FLERR,"Fix ttm number of nodes must be > 0");
v_0_sq = v_0*v_0;
// initialize Marsaglia RNG with processor-unique seed
random = new RanMars(lmp,seed + comm->me);
// allocate per-type arrays for force prefactors
gfactor1 = new double[atom->ntypes+1];
gfactor2 = new double[atom->ntypes+1];
// allocate 3d grid variables
total_nnodes = nxnodes*nynodes*nznodes;
memory->create(nsum,nxnodes,nynodes,nznodes,"ttm:nsum");
memory->create(nsum_all,nxnodes,nynodes,nznodes,"ttm:nsum_all");
memory->create(T_initial_set,nxnodes,nynodes,nznodes,"ttm:T_initial_set");
memory->create(sum_vsq,nxnodes,nynodes,nznodes,"ttm:sum_vsq");
memory->create(sum_mass_vsq,nxnodes,nynodes,nznodes,"ttm:sum_mass_vsq");
memory->create(sum_vsq_all,nxnodes,nynodes,nznodes,"ttm:sum_vsq_all");
memory->create(sum_mass_vsq_all,nxnodes,nynodes,nznodes,
"ttm:sum_mass_vsq_all");
memory->create(T_electron_old,nxnodes,nynodes,nznodes,"ttm:T_electron_old");
memory->create(T_electron,nxnodes,nynodes,nznodes,"ttm:T_electron");
memory->create(net_energy_transfer,nxnodes,nynodes,nznodes,
"TTM:net_energy_transfer");
memory->create(net_energy_transfer_all,nxnodes,nynodes,nznodes,
"TTM:net_energy_transfer_all");
flangevin = NULL;
grow_arrays(atom->nmax);
// zero out the flangevin array
for (int i = 0; i < atom->nmax; i++) {
flangevin[i][0] = 0;
flangevin[i][1] = 0;
flangevin[i][2] = 0;
}
atom->add_callback(0);
atom->add_callback(1);
// set initial electron temperatures from user input file
if (me == 0) read_initial_electron_temperatures();
MPI_Bcast(&T_electron[0][0][0],total_nnodes,MPI_DOUBLE,0,world);
}
/* ---------------------------------------------------------------------- */
FixTTM::~FixTTM()
{
if (nfileevery && me == 0) fclose(fp);
delete random;
delete [] gfactor1;
delete [] gfactor2;
memory->destroy(nsum);
memory->destroy(nsum_all);
memory->destroy(T_initial_set);
memory->destroy(sum_vsq);
memory->destroy(sum_mass_vsq);
memory->destroy(sum_vsq_all);
memory->destroy(sum_mass_vsq_all);
memory->destroy(T_electron_old);
memory->destroy(T_electron);
memory->destroy(flangevin);
memory->destroy(net_energy_transfer);
memory->destroy(net_energy_transfer_all);
}
/* ---------------------------------------------------------------------- */
int FixTTM::setmask()
{
int mask = 0;
mask |= POST_FORCE;
mask |= POST_FORCE_RESPA;
mask |= END_OF_STEP;
return mask;
}
/* ---------------------------------------------------------------------- */
void FixTTM::init()
{
if (domain->dimension == 2)
error->all(FLERR,"Cannot use fix ttm with 2d simulation");
if (domain->nonperiodic != 0)
error->all(FLERR,"Cannot use nonperiodic boundares with fix ttm");
if (domain->triclinic)
error->all(FLERR,"Cannot use fix ttm with triclinic box");
// set force prefactors
for (int i = 1; i <= atom->ntypes; i++) {
gfactor1[i] = - gamma_p / force->ftm2v;
gfactor2[i] =
sqrt(24.0*force->boltz*gamma_p/update->dt/force->mvv2e) / force->ftm2v;
}
for (int ixnode = 0; ixnode < nxnodes; ixnode++)
for (int iynode = 0; iynode < nynodes; iynode++)
for (int iznode = 0; iznode < nznodes; iznode++)
net_energy_transfer_all[ixnode][iynode][iznode] = 0;
if (strstr(update->integrate_style,"respa"))
nlevels_respa = ((Respa *) update->integrate)->nlevels;
}
/* ---------------------------------------------------------------------- */
void FixTTM::setup(int vflag)
{
if (strstr(update->integrate_style,"verlet"))
post_force_setup(vflag);
else {
((Respa *) update->integrate)->copy_flevel_f(nlevels_respa-1);
post_force_respa_setup(vflag,nlevels_respa-1,0);
((Respa *) update->integrate)->copy_f_flevel(nlevels_respa-1);
}
}
/* ---------------------------------------------------------------------- */
void FixTTM::post_force(int vflag)
{
double **x = atom->x;
double **v = atom->v;
double **f = atom->f;
int *type = atom->type;
int *mask = atom->mask;
int nlocal = atom->nlocal;
double gamma1,gamma2;
// apply damping and thermostat to all atoms in fix group
for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) {
double xscale = (x[i][0] - domain->boxlo[0])/domain->xprd;
double yscale = (x[i][1] - domain->boxlo[1])/domain->yprd;
double zscale = (x[i][2] - domain->boxlo[2])/domain->zprd;
int ixnode = static_cast<int>(xscale*nxnodes);
int iynode = static_cast<int>(yscale*nynodes);
int iznode = static_cast<int>(zscale*nznodes);
while (ixnode > nxnodes-1) ixnode -= nxnodes;
while (iynode > nynodes-1) iynode -= nynodes;
while (iznode > nznodes-1) iznode -= nznodes;
while (ixnode < 0) ixnode += nxnodes;
while (iynode < 0) iynode += nynodes;
while (iznode < 0) iznode += nznodes;
if (T_electron[ixnode][iynode][iznode] < 0)
error->all(FLERR,"Electronic temperature dropped below zero");
double tsqrt = sqrt(T_electron[ixnode][iynode][iznode]);
gamma1 = gfactor1[type[i]];
double vsq = v[i][0]*v[i][0] + v[i][1]*v[i][1] + v[i][2]*v[i][2];
if (vsq > v_0_sq) gamma1 *= (gamma_p + gamma_s)/gamma_p;
gamma2 = gfactor2[type[i]] * tsqrt;
flangevin[i][0] = gamma1*v[i][0] + gamma2*(random->uniform()-0.5);
flangevin[i][1] = gamma1*v[i][1] + gamma2*(random->uniform()-0.5);
flangevin[i][2] = gamma1*v[i][2] + gamma2*(random->uniform()-0.5);
f[i][0] += flangevin[i][0];
f[i][1] += flangevin[i][1];
f[i][2] += flangevin[i][2];
}
}
}
/* ---------------------------------------------------------------------- */
void FixTTM::post_force_setup(int vflag)
{
double **f = atom->f;
int *mask = atom->mask;
int nlocal = atom->nlocal;
// apply langevin forces that have been stored from previous run
for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) {
f[i][0] += flangevin[i][0];
f[i][1] += flangevin[i][1];
f[i][2] += flangevin[i][2];
}
}
}
/* ---------------------------------------------------------------------- */
void FixTTM::post_force_respa(int vflag, int ilevel, int iloop)
{
if (ilevel == nlevels_respa-1) post_force(vflag);
}
/* ---------------------------------------------------------------------- */
void FixTTM::post_force_respa_setup(int vflag, int ilevel, int iloop)
{
if (ilevel == nlevels_respa-1) post_force_setup(vflag);
}
/* ---------------------------------------------------------------------- */
void FixTTM::reset_dt()
{
for (int i = 1; i <= atom->ntypes; i++)
gfactor2[i] =
sqrt(24.0*force->boltz*gamma_p/update->dt/force->mvv2e) / force->ftm2v;
}
/* ----------------------------------------------------------------------
read in initial electron temperatures from a user-specified file
only called by proc 0
------------------------------------------------------------------------- */
void FixTTM::read_initial_electron_temperatures()
{
char line[MAXLINE];
for (int ixnode = 0; ixnode < nxnodes; ixnode++)
for (int iynode = 0; iynode < nynodes; iynode++)
for (int iznode = 0; iznode < nznodes; iznode++)
T_initial_set[ixnode][iynode][iznode] = 0;
// read initial electron temperature values from file
int ixnode,iynode,iznode;
double T_tmp;
while (1) {
if (fgets(line,MAXLINE,fpr) == NULL) break;
sscanf(line,"%d %d %d %lg",&ixnode,&iynode,&iznode,&T_tmp);
if (T_tmp < 0.0) error->one(FLERR,"Fix ttm electron temperatures must be > 0.0");
T_electron[ixnode][iynode][iznode] = T_tmp;
T_initial_set[ixnode][iynode][iznode] = 1;
}
for (int ixnode = 0; ixnode < nxnodes; ixnode++)
for (int iynode = 0; iynode < nynodes; iynode++)
for (int iznode = 0; iznode < nznodes; iznode++)
if (T_initial_set[ixnode][iynode][iznode] == 0)
error->one(FLERR,"Initial temperatures not all set in fix ttm");
// close file
fclose(fpr);
}
/* ---------------------------------------------------------------------- */
void FixTTM::end_of_step()
{
double **x = atom->x;
double **v = atom->v;
double *mass = atom->mass;
double *rmass = atom->rmass;
int *type = atom->type;
int *mask = atom->mask;
int nlocal = atom->nlocal;
for (int ixnode = 0; ixnode < nxnodes; ixnode++)
for (int iynode = 0; iynode < nynodes; iynode++)
for (int iznode = 0; iznode < nznodes; iznode++)
net_energy_transfer[ixnode][iynode][iznode] = 0;
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
double xscale = (x[i][0] - domain->boxlo[0])/domain->xprd;
double yscale = (x[i][1] - domain->boxlo[1])/domain->yprd;
double zscale = (x[i][2] - domain->boxlo[2])/domain->zprd;
int ixnode = static_cast<int>(xscale*nxnodes);
int iynode = static_cast<int>(yscale*nynodes);
int iznode = static_cast<int>(zscale*nznodes);
while (ixnode > nxnodes-1) ixnode -= nxnodes;
while (iynode > nynodes-1) iynode -= nynodes;
while (iznode > nznodes-1) iznode -= nznodes;
while (ixnode < 0) ixnode += nxnodes;
while (iynode < 0) iynode += nynodes;
while (iznode < 0) iznode += nznodes;
net_energy_transfer[ixnode][iynode][iznode] +=
(flangevin[i][0]*v[i][0] + flangevin[i][1]*v[i][1] +
flangevin[i][2]*v[i][2]);
}
MPI_Allreduce(&net_energy_transfer[0][0][0],
&net_energy_transfer_all[0][0][0],
total_nnodes,MPI_DOUBLE,MPI_SUM,world);
double dx = domain->xprd/nxnodes;
double dy = domain->yprd/nynodes;
double dz = domain->zprd/nznodes;
double del_vol = dx*dy*dz;
// num_inner_timesteps = # of inner steps (thermal solves)
// required this MD step to maintain a stable explicit solve
int num_inner_timesteps = 1;
double inner_dt = update->dt;
double stability_criterion = 1.0 -
2.0*inner_dt/(electronic_specific_heat*electronic_density) *
(electronic_thermal_conductivity*(1.0/dx/dx + 1.0/dy/dy + 1.0/dz/dz));
if (stability_criterion < 0.0) {
inner_dt = 0.5*(electronic_specific_heat*electronic_density) /
(electronic_thermal_conductivity*(1.0/dx/dx + 1.0/dy/dy + 1.0/dz/dz));
num_inner_timesteps = static_cast<int>(update->dt/inner_dt) + 1;
inner_dt = update->dt/double(num_inner_timesteps);
if (num_inner_timesteps > 1000000)
error->warning(FLERR,"Too many inner timesteps in fix ttm",0);
}
for (int ith_inner_timestep = 0; ith_inner_timestep < num_inner_timesteps;
ith_inner_timestep++) {
for (int ixnode = 0; ixnode < nxnodes; ixnode++)
for (int iynode = 0; iynode < nynodes; iynode++)
for (int iznode = 0; iznode < nznodes; iznode++)
T_electron_old[ixnode][iynode][iznode] =
T_electron[ixnode][iynode][iznode];
// compute new electron T profile
for (int ixnode = 0; ixnode < nxnodes; ixnode++)
for (int iynode = 0; iynode < nynodes; iynode++)
for (int iznode = 0; iznode < nznodes; iznode++) {
int right_xnode = ixnode + 1;
int right_ynode = iynode + 1;
int right_znode = iznode + 1;
if (right_xnode == nxnodes) right_xnode = 0;
if (right_ynode == nynodes) right_ynode = 0;
if (right_znode == nznodes) right_znode = 0;
int left_xnode = ixnode - 1;
int left_ynode = iynode - 1;
int left_znode = iznode - 1;
if (left_xnode == -1) left_xnode = nxnodes - 1;
if (left_ynode == -1) left_ynode = nynodes - 1;
if (left_znode == -1) left_znode = nznodes - 1;
T_electron[ixnode][iynode][iznode] =
T_electron_old[ixnode][iynode][iznode] +
inner_dt/(electronic_specific_heat*electronic_density) *
(electronic_thermal_conductivity *
((T_electron_old[right_xnode][iynode][iznode] +
T_electron_old[left_xnode][iynode][iznode] -
2*T_electron_old[ixnode][iynode][iznode])/dx/dx +
(T_electron_old[ixnode][right_ynode][iznode] +
T_electron_old[ixnode][left_ynode][iznode] -
2*T_electron_old[ixnode][iynode][iznode])/dy/dy +
(T_electron_old[ixnode][iynode][right_znode] +
T_electron_old[ixnode][iynode][left_znode] -
2*T_electron_old[ixnode][iynode][iznode])/dz/dz) -
(net_energy_transfer_all[ixnode][iynode][iznode])/del_vol);
}
}
// output nodal temperatures for current timestep
if ((nfileevery) && !(update->ntimestep % nfileevery)) {
// compute atomic Ta for each grid point
for (int ixnode = 0; ixnode < nxnodes; ixnode++)
for (int iynode = 0; iynode < nynodes; iynode++)
for (int iznode = 0; iznode < nznodes; iznode++) {
nsum[ixnode][iynode][iznode] = 0;
nsum_all[ixnode][iynode][iznode] = 0;
sum_vsq[ixnode][iynode][iznode] = 0.0;
sum_mass_vsq[ixnode][iynode][iznode] = 0.0;
sum_vsq_all[ixnode][iynode][iznode] = 0.0;
sum_mass_vsq_all[ixnode][iynode][iznode] = 0.0;
}
double massone;
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
if (rmass) massone = rmass[i];
else massone = mass[type[i]];
double xscale = (x[i][0] - domain->boxlo[0])/domain->xprd;
double yscale = (x[i][1] - domain->boxlo[1])/domain->yprd;
double zscale = (x[i][2] - domain->boxlo[2])/domain->zprd;
int ixnode = static_cast<int>(xscale*nxnodes);
int iynode = static_cast<int>(yscale*nynodes);
int iznode = static_cast<int>(zscale*nznodes);
while (ixnode > nxnodes-1) ixnode -= nxnodes;
while (iynode > nynodes-1) iynode -= nynodes;
while (iznode > nznodes-1) iznode -= nznodes;
while (ixnode < 0) ixnode += nxnodes;
while (iynode < 0) iynode += nynodes;
while (iznode < 0) iznode += nznodes;
double vsq = v[i][0]*v[i][0] + v[i][1]*v[i][1] + v[i][2]*v[i][2];
nsum[ixnode][iynode][iznode] += 1;
sum_vsq[ixnode][iynode][iznode] += vsq;
sum_mass_vsq[ixnode][iynode][iznode] += massone*vsq;
}
MPI_Allreduce(&nsum[0][0][0],&nsum_all[0][0][0],total_nnodes,
MPI_INT,MPI_SUM,world);
MPI_Allreduce(&sum_vsq[0][0][0],&sum_vsq_all[0][0][0],total_nnodes,
MPI_DOUBLE,MPI_SUM,world);
MPI_Allreduce(&sum_mass_vsq[0][0][0],&sum_mass_vsq_all[0][0][0],
total_nnodes,MPI_DOUBLE,MPI_SUM,world);
if (me == 0) {
fprintf(fp,BIGINT_FORMAT,update->ntimestep);
double T_a;
for (int ixnode = 0; ixnode < nxnodes; ixnode++)
for (int iynode = 0; iynode < nynodes; iynode++)
for (int iznode = 0; iznode < nznodes; iznode++) {
T_a = 0;
if (nsum_all[ixnode][iynode][iznode] > 0)
T_a = sum_mass_vsq_all[ixnode][iynode][iznode]/
(3.0*force->boltz*nsum_all[ixnode][iynode][iznode]/force->mvv2e);
fprintf(fp," %f",T_a);
}
fprintf(fp,"\t");
for (int ixnode = 0; ixnode < nxnodes; ixnode++)
for (int iynode = 0; iynode < nynodes; iynode++)
for (int iznode = 0; iznode < nznodes; iznode++)
fprintf(fp,"%f ",T_electron[ixnode][iynode][iznode]);
fprintf(fp,"\n");
}
}
}
/* ----------------------------------------------------------------------
memory usage of 3d grid
------------------------------------------------------------------------- */
double FixTTM::memory_usage()
{
double bytes = 0.0;
bytes += 5*total_nnodes * sizeof(int);
bytes += 14*total_nnodes * sizeof(double);
return bytes;
}
/* ---------------------------------------------------------------------- */
void FixTTM::grow_arrays(int ngrow)
{
memory->grow(flangevin,ngrow,3,"TTM:flangevin");
}
/* ----------------------------------------------------------------------
return the energy of the electronic subsystem or the net_energy transfer
between the subsystems
------------------------------------------------------------------------- */
double FixTTM::compute_vector(int n)
{
double e_energy = 0.0;
double transfer_energy = 0.0;
double dx = domain->xprd/nxnodes;
double dy = domain->yprd/nynodes;
double dz = domain->zprd/nznodes;
double del_vol = dx*dy*dz;
for (int ixnode = 0; ixnode < nxnodes; ixnode++)
for (int iynode = 0; iynode < nynodes; iynode++)
for (int iznode = 0; iznode < nznodes; iznode++) {
e_energy +=
T_electron[ixnode][iynode][iznode]*electronic_specific_heat*
electronic_density*del_vol;
transfer_energy +=
net_energy_transfer_all[ixnode][iynode][iznode]*update->dt;
}
if (n == 0) return e_energy;
if (n == 1) return transfer_energy;
return 0.0;
}
/* ----------------------------------------------------------------------
pack entire state of Fix into one write
------------------------------------------------------------------------- */
void FixTTM::write_restart(FILE *fp)
{
double *rlist;
memory->create(rlist,nxnodes*nynodes*nznodes+1,"TTM:rlist");
int n = 0;
rlist[n++] = seed;
for (int ixnode = 0; ixnode < nxnodes; ixnode++)
for (int iynode = 0; iynode < nynodes; iynode++)
for (int iznode = 0; iznode < nznodes; iznode++)
rlist[n++] = T_electron[ixnode][iynode][iznode];
if (comm->me == 0) {
int size = n * sizeof(double);
fwrite(&size,sizeof(int),1,fp);
fwrite(rlist,sizeof(double),n,fp);
}
memory->destroy(rlist);
}
/* ----------------------------------------------------------------------
use state info from restart file to restart the Fix
------------------------------------------------------------------------- */
void FixTTM::restart(char *buf)
{
int n = 0;
double *rlist = (double *) buf;
// the seed must be changed from the initial seed
seed = static_cast<int> (0.5*rlist[n++]);
for (int ixnode = 0; ixnode < nxnodes; ixnode++)
for (int iynode = 0; iynode < nynodes; iynode++)
for (int iznode = 0; iznode < nznodes; iznode++)
T_electron[ixnode][iynode][iznode] = rlist[n++];
delete random;
random = new RanMars(lmp,seed+comm->me);
}
/* ----------------------------------------------------------------------
pack values in local atom-based arrays for restart file
------------------------------------------------------------------------- */
int FixTTM::pack_restart(int i, double *buf)
{
buf[0] = 4;
buf[1] = flangevin[i][0];
buf[2] = flangevin[i][1];
buf[3] = flangevin[i][2];
return 4;
}
/* ----------------------------------------------------------------------
unpack values from atom->extra array to restart the fix
------------------------------------------------------------------------- */
void FixTTM::unpack_restart(int nlocal, int nth)
{
double **extra = atom->extra;
// skip to Nth set of extra values
int m = 0;
for (int i = 0; i < nth; i++) m += static_cast<int> (extra[nlocal][m]);
m++;
flangevin[nlocal][0] = extra[nlocal][m++];
flangevin[nlocal][1] = extra[nlocal][m++];
flangevin[nlocal][2] = extra[nlocal][m++];
}
/* ----------------------------------------------------------------------
maxsize of any atom's restart data
------------------------------------------------------------------------- */
int FixTTM::maxsize_restart()
{
return 4;
}
/* ----------------------------------------------------------------------
size of atom nlocal's restart data
------------------------------------------------------------------------- */
int FixTTM::size_restart(int nlocal)
{
return 4;
}
Event Timeline
Log In to Comment