Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91103317
pair_resquared_extra.tex
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Nov 7, 22:41
Size
3 KB
Mime Type
text/x-tex
Expires
Sat, Nov 9, 22:41 (2 d)
Engine
blob
Format
Raw Data
Handle
22197207
Attached To
rLAMMPS lammps
pair_resquared_extra.tex
View Options
\documentstyle
[12pt]
{
article
}
\begin
{
document
}
\begin
{
center
}
\large
{
Additional documentation for the RE-squared ellipsoidal potential
\\
as implemented in LAMMPS
}
\end
{
center
}
\centerline
{
Mike Brown, Sandia National Labs, October 2007
}
\vspace
{
0.3in
}
Let the shape matrices
$
\mathbf
{S}_i
=
\mbox
{diag}
(
a_i, b_i, c_i
)
$
be
given by the ellipsoid radii. Let the relative energy matrices
$
\mathbf
{E}_i
=
\mbox
{diag}
(
\epsilon
_{ia},
\epsilon
_{ib},
\epsilon
_{ic}
)
$
be given by the relative well depths
(dimensionless energy scales inversely proportional to the well-depths
of the respective orthogonal configurations of the interacting molecules).
Let
$
\mathbf
{A}_
1
$
and
$
\mathbf
{A}_
2
$
be the transformation matrices
from the simulation box frame to the body frame and
$
\mathbf
{r}
$
be the center to center vector between the particles. Let
$
A_{
12
}
$
be
the Hamaker constant for the interaction given in LJ units by
$
A_{
12
}
=
4
\pi
^
2
\epsilon
_{
\mathrm
{LJ}}
(
\rho\sigma
^
3
)
^
2
$
.
\vspace
{
0.3in
}
The RE-squared anisotropic interaction between pairs of
ellipsoidal particles is given by
$$
U
=
U_A
+
U_R,
$$
$$
U_
\alpha
=
\frac
{A_{
12
}}{m_
\alpha
}
(
\frac\sigma
{h}
)
^{n_
\alpha
}
(
1
+
o_
\alpha\eta\chi\frac\sigma
{h}
)
\times
\prod
_i{
\frac
{a_ib_ic_i}{
(
a_i
+
h
/
p_
\alpha
)(
b_i
+
h
/
p_
\alpha
)(
c_i
+
h
/
p_
\alpha
)
}},
$$
$$
m_A
=-
36
, n_A
=
0
, o_A
=
3
, p_A
=
2
,
$$
$$
m_R
=
2025
, n_R
=
6
, o_R
=
45
/
56
, p_R
=
60
^{
1
/
3
},
$$
$$
\chi
=
2
\hat
{
\mathbf
{r}}^T
\mathbf
{B}^{
-
1
}
\hat
{
\mathbf
{r}},
$$
$$
\hat
{
\mathbf
{r}}
=
{
\mathbf
{r} }
/
|
\mathbf
{r}|,
$$
$$
\mathbf
{B}
=
\mathbf
{A}_
1
^T
\mathbf
{E}_
1
\mathbf
{A}_
1
+
\mathbf
{A}_
2
^T
\mathbf
{E}_
2
\mathbf
{A}_
2
$$
$$
\eta
=
\frac
{
\det
[
\mathbf
{S}_
1
]/
\sigma
_
1
^
2
+
det
[
\mathbf
{S}_
2
]/
\sigma
_
2
^
2
}{
[
\det
[
\mathbf
{H}
]/
(
\sigma
_
1
+
\sigma
_
2
)]
^{
1
/
2
}},
$$
$$
\sigma
_i
=
(
\hat
{
\mathbf
{r}}^T
\mathbf
{A}_i^T
\mathbf
{S}_i^{
-
2
}
\mathbf
{A}_i
\hat
{
\mathbf
{r}}
)
^{
-
1
/
2
},
$$
$$
\mathbf
{H}
=
\frac
{
1
}{
\sigma
_
1
}
\mathbf
{A}_
1
^T
\mathbf
{S}_
1
^
2
\mathbf
{A}_
1
+
\frac
{
1
}{
\sigma
_
2
}
\mathbf
{A}_
2
^T
\mathbf
{S}_
2
^
2
\mathbf
{A}_
2
$$
Here, we use the distance of closest approach approximation given by the
Perram reference, namely
$$
h
=
|r|
-
\sigma
_{
12
},
$$
$$
\sigma
_{
12
}
=
[
\frac
{
1
}{
2
}
\hat
{
\mathbf
{r}}^T
\mathbf
{G}^{
-
1
}
\hat
{
\mathbf
{r}}
]
^{
-
1
/
2
},
$$
and
$$
\mathbf
{G}
=
\mathbf
{A}_
1
^T
\mathbf
{S}_
1
^
2
\mathbf
{A}_
1
+
\mathbf
{A}_
2
^T
\mathbf
{S}_
2
^
2
\mathbf
{A}_
2
$$
\vspace
{
0.3in
}
The RE-squared anisotropic interaction between a
ellipsoidal particle and a Lennard-Jones sphere is defined
as the
$
\lim
_{a_
2
-
>
0
}U
$
under the constraints that
$
a_
2
=
b_
2
=
c_
2
$
and
$
\frac
{
4
}{
3
}
\pi
a_
2
^
3
\rho
=
1
$
:
$$
U_{
\mathrm
{elj}}
=
U_{A_{
\mathrm
{elj}}}
+
U_{R_{
\mathrm
{elj}}},
$$
$$
U_{
\alpha
_{
\mathrm
{elj}}}
=(
\frac
{
3
\sigma
^
3
c_
\alpha
^
3
}
{
4
\pi
h_{
\mathrm
{elj}}^
3
}
)
\frac
{A_{
12
_{
\mathrm
{elj}}}}
{m_
\alpha
}
(
\frac\sigma
{h_{
\mathrm
{elj}}}
)
^{n_
\alpha
}
(
1
+
o_
\alpha\chi
_{
\mathrm
{elj}}
\frac\sigma
{h_{
\mathrm
{elj}}}
)
\times
\frac
{a_
1
b_
1
c_
1
}{
(
a_
1
+
h_{
\mathrm
{elj}}
/
p_
\alpha
)
(
b_
1
+
h_{
\mathrm
{elj}}
/
p_
\alpha
)(
c_
1
+
h_{
\mathrm
{elj}}
/
p_
\alpha
)
},
$$
$$
A_{
12
_{
\mathrm
{elj}}}
=
4
\pi
^
2
\epsilon
_{
\mathrm
{LJ}}
(
\rho\sigma
^
3
)
,
$$
with
$
h_{
\mathrm
{elj}}
$
and
$
\chi
_{
\mathrm
{elj}}
$
calculated as above
by replacing
$
B
$
with
$
B_{
\mathrm
{elj}}
$
and
$
G
$
with
$
G_{
\mathrm
{elj}}
$
:
$$
\mathbf
{B}_{
\mathrm
{elj}}
=
\mathbf
{A}_
1
^T
\mathbf
{E}_
1
\mathbf
{A}_
1
+
I,
$$
$$
\mathbf
{G}_{
\mathrm
{elj}}
=
\mathbf
{A}_
1
^T
\mathbf
{S}_
1
^
2
\mathbf
{A}_
1
.
$$
\vspace
{
0.3in
}
The interaction between two LJ spheres is calculated as:
$$
U_{
\mathrm
{lj}}
=
4
\epsilon
\left
[
\left
(
\frac
{
\sigma
}{|
\mathbf
{r}|}
\right
)
^{
12
}
-
\left
(
\frac
{
\sigma
}{|
\mathbf
{r}|}
\right
)
^
6
\right
]
$$
\vspace
{
0.3in
}
The analytic derivatives are used for all force and torque calculation.
\end
{
document
}
Event Timeline
Log In to Comment