Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90779958
pair_gayberne_extra.tex
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Mon, Nov 4, 16:43
Size
5 KB
Mime Type
text/x-tex
Expires
Wed, Nov 6, 16:43 (2 d)
Engine
blob
Format
Raw Data
Handle
21813303
Attached To
rLAMMPS lammps
pair_gayberne_extra.tex
View Options
\documentstyle[12pt]{article}
\begin{document}
\begin{center}
\large{Additional documentation for the Gay-Berne ellipsoidal potential \\
as implemented in LAMMPS}
\end{center}
\centerline{Mike Brown, Sandia National Labs, April 2007}
\vspace{0.3in}
The Gay-Berne anisotropic LJ interaction between pairs of dissimilar
ellipsoidal particles is given by
$$ U ( \mathbf{A}_1, \mathbf{A}_2, \mathbf{r}_{12} ) = U_r (
\mathbf{A}_1, \mathbf{A}_2, \mathbf{r}_{12}, \gamma ) \cdot \eta_{12} (
\mathbf{A}_1, \mathbf{A}_2, \upsilon ) \cdot \chi_{12} ( \mathbf{A}_1,
\mathbf{A}_2, \mathbf{r}_{12}, \mu ) $$
where $\mathbf{A}_1$ and $\mathbf{A}_2$ are the transformation
matrices from the simulation box frame to the body frame and
$\mathbf{r}_{12}$ is the center to center vector between the
particles. $U_r$ controls the shifted distance dependent interaction
based on the distance of closest approach of the two particles
($h_{12}$) and the user-specified shift parameter gamma:
$$ U_r = 4 \epsilon ( \varrho^{12} - \varrho^6) $$
$$ \varrho = \frac{\sigma}{ h_{12} + \gamma \sigma} $$
Let the shape matrices $\mathbf{S}_i=\mbox{diag}(a_i, b_i, c_i)$ be
given by the ellipsoid radii. The $\eta$ orientation-dependent energy
based on the user-specified exponent $\upsilon$ is given by
$$ \eta_{12} = [ \frac{ 2 s_1 s_2 }{\det ( \mathbf{G}_{12} )}]^{
\upsilon / 2 } , $$
$$ s_i = [a_i b_i + c_i c_i][a_i b_i]^{ 1 / 2 }, $$
and
$$ \mathbf{G}_{12} = \mathbf{A}_1^T \mathbf{S}_1^2 \mathbf{A}_1 +
\mathbf{A}_2^T \mathbf{S}_2^2 \mathbf{A}_2 = \mathbf{G}_1 +
\mathbf{G}_2. $$
Let the relative energy matrices $\mathbf{E}_i = \mbox{diag}
(\epsilon_{ia}, \epsilon_{ib}, \epsilon_{ic})$ be given by
the relative well depths (dimensionless energy scales
inversely proportional to the well-depths of the respective
orthogonal configurations of the interacting molecules). The
$\chi$ orientation-dependent energy based on the user-specified
exponent $\mu$ is given by
$$ \chi_{12} = [2 \hat{\mathbf{r}}_{12}^T \mathbf{B}_{12}^{-1}
\hat{\mathbf{r}}_{12}]^\mu, $$
$$ \hat{\mathbf{r}}_{12} = { \mathbf{r}_{12} } / |\mathbf{r}_{12}|, $$
and
$$ \mathbf{B}_{12} = \mathbf{A}_1^T \mathbf{E}_1^2 \mathbf{A}_1 +
\mathbf{A}_2^T \mathbf{E}_2^2 \mathbf{A}_2 = \mathbf{B}_1 +
\mathbf{B}_2. $$
Here, we use the distance of closest approach approximation given by the
Perram reference, namely
$$ h_{12} = r - \sigma_{12} ( \mathbf{A}_1, \mathbf{A}_2,
\mathbf{r}_{12} ), $$
$$ r = |\mathbf{r}_{12}|, $$
and
$$ \sigma_{12} = [ \frac{1}{2} \hat{\mathbf{r}}_{12}^T
\mathbf{G}_{12}^{-1} \hat{\mathbf{r}}_{12}.]^{ -1/2 } $$
Forces and Torques: Because the analytic forces and torques have not
been published for this potential, we list them here:
$$ \mathbf{f} = - \eta_{12} ( U_r \cdot { \frac{\partial \chi_{12}
}{\partial r} } + \chi_{12} \cdot { \frac{\partial U_r }{\partial r} }
) $$
where the derivative of $U_r$ is given by (see Allen reference)
$$ \frac{\partial U_r }{\partial r} = \frac{ \partial U_{SLJ} }{
\partial r } \hat{\mathbf{r}}_{12} + r^{-2} \frac{ \partial U_{SLJ} }{
\partial \varphi } [ \mathbf{\kappa} - ( \mathbf{\kappa}^T \cdot
\hat{\mathbf{r}}_{12}) \hat{\mathbf{r}}_{12} ], $$
$$ \frac{ \partial U_{SLJ} }{ \partial \varphi } = 24 \epsilon ( 2
\varrho^{13} - \varrho^7 ) \sigma_{12}^3 / 2 \sigma, $$
$$ \frac{ \partial U_{SLJ} }{ \partial r } = 24 \epsilon ( 2
\varrho^{13} - \varrho^7 ) / \sigma, $$
and
$$ \mathbf{\kappa} = \mathbf{G}_{12}^{-1} \cdot \mathbf{r}_{12}. $$
The derivate of the $\chi$ term is given by
$$ \frac{\partial \chi_{12} }{\partial r} = - r^{-2} \cdot 4.0 \cdot [
\mathbf{\iota} - ( \mathbf{\iota}^T \cdot \hat{\mathbf{r}}_{12} )
\hat{\mathbf{r}}_{12} ] \cdot \mu \cdot \chi_{12}^{ ( \mu -1 ) / \mu
}, $$
and
$$ \mathbf{\iota} = \mathbf{B}_{12}^{-1} \cdot \mathbf{r}_{12}. $$
The torque is given by:
$$ \mathbf{\tau}_i = U_r \eta_{12} \frac{ \partial \chi_{12} }{
\partial \mathbf{q}_i } + \chi_{12} ( U_r \frac{ \partial \eta_{12} }{
\partial \mathbf{q}_i } + \eta_{12} \frac{ \partial U_r }{ \partial
\mathbf{q}_i } ), $$
$$ \frac{ \partial U_r }{ \partial \mathbf{q}_i } = \mathbf{A}_i \cdot
(- \mathbf{\kappa}^T \cdot \mathbf{G}_i \times \mathbf{f}_k ), $$
$$ \mathbf{f}_k = - r^{-2} \frac{ \delta U_{SLJ} }{ \delta \varphi }
\mathbf{\kappa}, $$
and
$$ \frac{ \partial \chi_{12} }{ \partial \mathbf{q}_i } = 4.0 \cdot
r^{-2} \cdot \mathbf{A}_i (- \mathbf{\iota}^T \cdot \mathbf{B}_i
\times \mathbf{\iota} ). $$
For the derivative of the $\eta$ term, we were unable to find a matrix
expression due to the determinant. Let $a_{mi}$ be the mth row of the
rotation matrix $A_i$. Then,
$$ \frac{ \partial \eta_{12} }{ \partial \mathbf{q}_i } = \mathbf{A}_i
\cdot \sum_m \mathbf{a}_{mi} \times \frac{ \partial \eta_{12} }{
\partial \mathbf{a}_{mi} } = \mathbf{A}_i \cdot \sum_m \mathbf{a}_{mi}
\times \mathbf{d}_{mi}, $$
where $d_mi$ represents the mth row of a derivative matrix $D_i$,
$$ \mathbf{D}_i = - \frac{1}{2} \cdot ( \frac{2s1s2}{\det (
\mathbf{G}_{12} ) } )^{ \upsilon / 2 } \cdot {\frac{\upsilon}{\det (
\mathbf{G}_{12} ) }} \cdot \mathbf{E}, $$
where the matrix $E$ gives the derivate with respect to the rotation
matrix,
$$ \mathbf{E} = [ e_{my} ] = \frac{ \partial \eta_{12} }{ \partial
\mathbf{A}_i }, $$
and
$$ e_{my} = \det ( \mathbf{G}_{12} ) \cdot \mbox{trace} [
\mathbf{G}_{12}^{-1} \cdot ( \hat{\mathbf{p}}_y \otimes \mathbf{a}_m +
\mathbf{a}_m \otimes \hat{\mathbf{p}}_y ) \cdot s_{mm}^2 ]. $$
Here, $p_v$ is the unit vector for the axes in the lab frame $(p1=[1, 0,
0], p2=[0, 1, 0], and p3=[0, 0, 1])$ and $s_{mm}$ gives the mth radius of
the ellipsoid $i$.
\end{document}
Event Timeline
Log In to Comment