<p>Thus parameter &#956, indicated above, is given by : &#956 = (&#8730n
+ &#8730m) &#8260 2</p>
<p>The potential offers the possibility to consider the polarizability of
the electron clouds of oxygen by changing the slater radius of the
charge density around the oxygens through the parameters <em>rBB, rB and
rS</em> in the ffield.SMTBQ.Syst. This change in radius is performed
according to the method developed by E. Maras
<aclass="reference internal"href="#smtb-q-2"><span>SMTB-Q_2</span></a>. This method needs to determine the number of
nearest neighbors around the oxygen. This calculation is based on
first (<em>r<sub>1n</sub></em>) and second (<em>r<sub>2n</sub></em>) distances
neighbors.</p>
<p>The SMTB-Q potential is a variable charge potential. The equilibrium
charge on each atom is calculated by the electronegativity
equalization (QEq) method. See <aclass="reference internal"href="#rick"><span>Rick</span></a> for further detail. One
can adjust the frequency, the maximum number of iterative loop and the
convergence of the equilibrium charge calculation. To obtain the
energy conservation in NVE thermodynamic ensemble, we recommend to use
a convergence parameter in the interval 10<sup>-5</sup> -
10<sup>-6</sup> eV.</p>
<p>The ffield.SMTBQ.Syst files are provided for few systems. They consist
of nine parts and the lines beginning with ‘#’ are comments (note that
the number of comment lines matter). The first sections are on the
potential parameters and others are on the simulation options and
might be modified. Keywords are character type and must be enclosed in
quotation marks (‘’).</p>
<olclass="arabic simple">
<li>Number of different element in the oxide:</li>
</ol>
<ulclass="simple">
<li>N<sub>elem</sub>= 2 or 3</li>
<li>Divided line</li>
</ul>
<olclass="arabic simple"start="2">
<li>Atomic parameters</li>
</ol>
<p>For the anion (oxygen)</p>
<ulclass="simple">
<li>Name of element (char) and stoichiometry in oxide</li>
<li>Formal charge and mass of element</li>
<li>Principal quantic number of outer orbital (<em>n</em>), electronegativity (<em>&#967<sup>0</sup><sub>i</simulationub></em>) and hardness (<em>J<sup>0</sup><sub>i</sub></em>)</li>
<li>Ionic radius parameters : max coordination number (<em>coordBB</em> = 6 by default), bulk coordination number <em>(coordB)</em>, surface coordination number <em>(coordS)</em> and <em>rBB, rB and rS</em> the slater radius for each coordination number. (<b>note : If you don’t want to change the slater radius, use three identical radius values</b>)</li>
<li>Number of orbital shared by the element in the oxide (<em>d<sub>i</sub></em>)</li>
<li>Divided line</li>
</ul>
<p>For each cations (metal):</p>
<ulclass="simple">
<li>Name of element (char) and stoichiometry in oxide</li>
<li>Formal charge and mass of element</li>
<li>Number of electron in outer orbital <em>(ne)</em>, electronegativity (<em>&#967<sup>0</sup><sub>i</simulationub></em>), hardness (<em>J<sup>0</sup><sub>i</sub></em>) and <em>r<sub>Salter</sub></em> the slater radius for the cation.</li>
<li>Number of orbitals shared by the elements in the oxide (<em>d<sub>i</sub></em>)</li>
<li>Divided line</li>
</ul>
<olclass="arabic simple"start="3">
<li>Potential parameters:</li>
</ol>
<ulclass="simple">
<li>Keyword for element1, element2 and interaction potential (‘second_moment’ or ‘buck’ or ‘buckPlusAttr’) between element 1 and 2. If the potential is ‘second_moment’, specify ‘oxide’ or ‘metal’ for metal-oxygen or metal-metal interactions respectively.</li>
<li>Potential parameter: <pre><br/> If type of potential is ‘second_moment’ : <em>A (eV)</em>, <em>p</em>, <em>&#958<sup>0</sup></em> (eV) and <em>q</em><br/><em>r<sub>c1</sub></em> (&#197), <em>r<sub>c2</sub></em> (&#197) and <em>r<sub>0</sub></em> (&#197) <br/> If type of potential is ‘buck’ : <em>C</em> (eV) and <em>&#961</em> (&#197) <br/> If type of potential is ‘buckPlusAttr’ : <em>C</em> (eV) and <em>&#961</em> (&#197) <br/><em>D</em> (eV), <em>B</em> (&#197<sup>-1</sup>), <em>r<sub>1</sub><sup>OO</sup></em> (&#197) and <em>r<sub>2</sub><sup>OO</sup></em> (&#197) </pre></li>
<li>Divided line</li>
</ul>
<olclass="arabic simple"start="4">
<li>Tables parameters:</li>
</ol>
<ulclass="simple">
<li>Cutoff radius for the Coulomb interaction (<em>R<sub>coul</sub></em>)</li>
<li>Starting radius (<em>r<sub>min</sub></em> = 1,18845 &#197) and increments (<em>dr</em> = 0,001 &#197) for creating the potential table.</li>
<li>Divided line</li>
</ul>
<olclass="arabic simple"start="5">
<li>Rick model parameter:</li>
</ol>
<ulclass="simple">
<li><em>Nevery</em> : parameter to set the frequency (<em>1/Nevery</em>) of the charge resolution. The charges are evaluated each <em>Nevery</em> time steps.</li>
<li>Max number of iterative loop (<em>loopmax</em>) and precision criterion (<em>prec</em>) in eV of the charge resolution</li>
<li>Divided line</li>
</ul>
<olclass="arabic simple"start="6">
<li>Coordination parameter:</li>
</ol>
<ulclass="simple">
<li>First (<em>r<sub>1n</sub></em>) and second (<em>r<sub>2n</sub></em>) neighbor distances in &#197</li>
<li>Divided line</li>
</ul>
<olclass="arabic simple"start="7">
<li>Charge initialization mode:</li>
</ol>
<ulclass="simple">
<li>Keyword (<em>QInitMode</em>) and initial oxygen charge (<em>Q<sub>init</sub></em>). If keyword = ‘true’, all oxygen charges are initially set equal to <em>Q<sub>init</sub></em>. The charges on the cations are initially set in order to respect the neutrality of the box. If keyword = ‘false’, all atom charges are initially set equal to 0 if you use “create_atom”#create_atom command or the charge specified in the file structure using <spanclass="xref std std-ref">read_data</span> command.</li>
<li>Divided line</li>
</ul>
<olclass="arabic simple"start="8">
<li>Mode for the electronegativity equalization (Qeq)</li>
</ol>
<ulclass="simple">
<li>Keyword mode: <pre><br/> QEqAll (one QEq group) | no parameters <br/> QEqAllParallel (several QEq groups) | no parameters <br/> Surface | zlim (QEq only for z>zlim) </pre></li>
<li>Parameter if necessary</li>
<li>Divided line</li>
</ul>
<olclass="arabic simple"start="9">
<li>Verbose</li>
</ol>
<ulclass="simple">
<li>If you want the code to work in verbose mode or not : ‘true’ or ‘false’</li>
<li>If you want to print or not in file ‘Energy_component.txt’ the three main contributions to the energy of the system according to the description presented above : ‘true’ or ‘false’ and <em>N<sub>Energy</sub></em>. This option writes in file every <em>N<sub>Energy</sub></em> time step. If the value is ‘false’ then <em>N<sub>Energy</sub></em> = 0. The file take into account the possibility to have several QEq group <em>g</em> then it writes: time step, number of atoms in group <em>g</em>, electrostatic part of energy, <em>E<sub>ES</sub></em>, the interaction between oxygen, <em>E<sub>OO</sub></em>, and short range metal-oxygen interaction, <em>E<sub>MO</sub></em>.</li>
<li>If you want to print in file ‘Electroneg_component.txt’ the electronegativity component (<em>&#8706E<sub>tot</sub>&#8260&#8706Q<sub>i</sub></em>) or not: ‘true’ or ‘false’ and <em>N<sub>Electroneg</sub></em>.This option writes in file every <em>N<sub>Electroneg</sub></em> time step. If the value is ‘false’ then <em>N<sub>Electroneg</sub></em> = 0. The file consist in atom number <em>i</em>, atom type (1 for oxygen and # higher than 1 for metal), atom position: <em>x</em>, <em>y</em> and <em>z</em>, atomic charge of atom <em>i</em>, electrostatic part of atom <em>i</em> electronegativity, covalent part of atom <em>i</em> electronegativity, the hopping integral of atom <em>i</em><em>(Z&#946<sup>2</sup>)<sub>i<sub></em> and box electronegativity.</li>
</ul>
<divclass="admonition note">
<pclass="first admonition-title">Note</p>
<pclass="last">This last option slows down the calculation dramatically. Use
<p>This pair style does not support the <aclass="reference internal"href="pair_modify.html"><em>pair_modify</em></a>
mix, shift, table, and tail options.</p>
<p>This pair style does not write its information to <aclass="reference internal"href="restart.html"><em>binary restart files</em></a>, since it is stored in potential files. Thus, you
needs to re-specify the pair_style and pair_coeff commands in an input
script that reads a restart file.</p>
<p>This pair style can only be used via the <em>pair</em> keyword of the
<aclass="reference internal"href="run_style.html"><em>run_style respa</em></a> command. It does not support the
<p>This pair style is part of the USER-SMTBQ package and is only enabled
if LAMMPS is built with that package. See the <aclass="reference internal"href="Section_start.html#start-3"><span>Making LAMMPS</span></a> section for more info.</p>
<p>This potential requires using atom type 1 for oxygen and atom type
higher than 1 for metal atoms.</p>
<p>This pair style requires the <aclass="reference internal"href="newton.html"><em>newton</em></a> setting to be “on”
for pair interactions.</p>
<p>The SMTB-Q potential files provided with LAMMPS (see the potentials
directory) are parameterized for metal <codeclass="xref doc docutils literal"><spanclass="pre">units</span></code>.</p>
<hrclass="docutils"/>
<p><strong>Citing this work:</strong></p>
<p>Please cite related publication: N. Salles, O. Politano, E. Amzallag
and R. Tetot, Comput. Mater. Sci. 111 (2016) 181-189</p>
<hrclass="docutils"/>
<pid="smtb-q-1"><strong>(SMTB-Q_1)</strong> N. Salles, O. Politano, E. Amzallag, R. Tetot,
Comput. Mater. Sci. 111 (2016) 181-189</p>
<pid="smtb-q-2"><strong>(SMTB-Q_2)</strong> E. Maras, N. Salles, R. Tetot, T. Ala-Nissila,
H. Jonsson, J. Phys. Chem. C 2015, 119, 10391-10399</p>
<pid="smtb-q-3"><strong>(SMTB-Q_3)</strong> R. Tetot, N. Salles, S. Landron, E. Amzallag, Surface
Science 616, 19-8722 28 (2013)</p>
<pid="wolf"><strong>(Wolf)</strong> D. Wolf, P. Keblinski, S. R. Phillpot, J. Eggebrecht, J Chem
Phys, 110, 8254 (1999).</p>
<pid="rick"><strong>(Rick)</strong> S. W. Rick, S. J. Stuart, B. J. Berne, J Chem Phys 101, 6141
Built with <ahref="http://sphinx-doc.org/">Sphinx</a> using a <ahref="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <ahref="https://readthedocs.org">Read the Docs</a>.