# GCMC for LJ simple fluid, no dynamics # T = 2.0 # rho ~ 0.5 # p ~ 1.5 # mu_ex ~ 0.0 # comparable to Frenkel and Smit GCMC Case Study, Figure 5.8 # variables modifiable using -var command line switch variable mu index -1.25 variable temp index 2.0 variable disp index 1.0 variable lbox index 5.0 # global model settings units lj atom_style atomic pair_style lj/cut 3.0 pair_modify tail no # turn of to avoid triggering full_energy # box region box block 0 ${lbox} 0 ${lbox} 0 ${lbox} create_box 1 box # lj parameters pair_coeff * * 1.0 1.0 mass * 1.0 # gcmc fix mygcmc all gcmc 1 100 100 1 29494 ${temp} ${mu} ${disp} # averaging variable rho equal density variable p equal press variable nugget equal 1.0e-8 variable lambda equal 1.0 variable muex equal ${mu}-${temp}*ln(density*${lambda}+${nugget}) fix ave all ave/time 10 100 1000 v_rho v_p v_muex ave one file rho_vs_p.dat variable rhoav equal f_ave[1] variable pav equal f_ave[2] variable muexav equal f_ave[3] # output variable tacc equal f_mygcmc[2]/(f_mygcmc[1]+${nugget}) variable iacc equal f_mygcmc[4]/(f_mygcmc[3]+${nugget}) variable dacc equal f_mygcmc[6]/(f_mygcmc[5]+${nugget}) compute_modify thermo_temp dynamic yes thermo_style custom step temp press pe ke density atoms v_iacc v_dacc v_tacc v_rhoav v_pav v_muexav thermo 1000 # run run 10000