Page MenuHomec4science

DiagonalMatrix.h
No OneTemporary

File Metadata

Created
Wed, Jul 3, 17:44

DiagonalMatrix.h

#ifndef DIAGONALMATRIX_H
#define DIAGONALMATRIX_H
#include "MatrixDef.h"
namespace ATC_matrix {
/**
* @class DiagonalMatrix
* @brief Class for storing data as a diagonal matrix
*/
template<typename T>
class DiagonalMatrix : public Matrix<T>
{
public:
explicit DiagonalMatrix(INDEX nRows=0, bool zero=0);
DiagonalMatrix(const DiagonalMatrix<T>& c);
DiagonalMatrix(const Vector<T>& v);
virtual ~DiagonalMatrix();
//* resizes the matrix, ignores nCols, optionally zeros
void reset(INDEX rows, INDEX cols=0, bool zero=true);
//* resizes the matrix, ignores nCols, optionally copies what fits
void resize(INDEX rows, INDEX cols=0, bool copy=false);
//* resets based on full copy of vector v
void reset(const Vector<T>& v);
//* resets based on full copy of a DiagonalMatrix
void reset(const DiagonalMatrix<T>& v);
//* resets based on a one column DenseMatrix
void reset(const DenseMatrix<T>& c);
//* resizes the matrix, ignores nCols, optionally copies what fits
void copy(const T * ptr, INDEX rows, INDEX cols=0);
//* resets based on a "shallow" copy of a vector
void shallowreset(const Vector<T> &v);
//* resets based on a "shallow" copy of a DiagonalMatrix
void shallowreset(const DiagonalMatrix<T> &c);
//* resets based on a "shallow" copy of one column DenseMatrix
void shallowreset(const DenseMatrix<T> &c);
T& operator()(INDEX i, INDEX j);
T operator()(INDEX i, INDEX j) const;
T& operator[](INDEX i);
T operator[](INDEX i) const;
INDEX nRows() const;
INDEX nCols() const;
T* ptr() const;
void write_restart(FILE *f) const;
// Dump matrix contents to screen (not defined for all datatypes)
std::string to_string(int p=myPrecision) const { return _data->to_string(); }
using Matrix<T>::matlab;
void matlab(std::ostream &o, const std::string &s="D") const;
// overloaded operators
DiagonalMatrix<T>& operator=(const T s);
DiagonalMatrix<T>& operator=(const DiagonalMatrix<T> &C);
//DiagonalMatrix<T>& operator=(const Vector<T> &C);
INDEX size() const { return _data->size(); }
//* computes the inverse of this matrix
DiagonalMatrix<T>& inv_this();
//* returns a copy of the inverse of this matrix
DiagonalMatrix<T> inv() const;
// DiagonalMatrix-matrix multiplication function
virtual void MultAB(const Matrix<T>& B, DenseMatrix<T>& C) const
{
GCK(*this, B, this->nCols()!=B.nRows(), "DiagonalMatrix-Matrix multiplication");
for (INDEX i=0; i<C.nRows(); i++) {
T value = (*this)[i];
for (INDEX j=0; j<C.nCols(); j++)
C(i,j) = B(i,j) * value;
}
}
protected:
void _set_equal(const Matrix<T> &r);
DiagonalMatrix& operator=(const Vector<T> &c) {}
DiagonalMatrix& operator=(const Matrix<T> &c) {}
private:
void _delete();
Vector<T> *_data;
};
//-----------------------------------------------------------------------------
// DiagonalMatrix-DiagonalMatrix multiplication
//-----------------------------------------------------------------------------
template<typename T>
DiagonalMatrix<T> operator*(const DiagonalMatrix<T>& A, const DiagonalMatrix<T>& B)
{
SSCK(A, B, "DiagonalMatrix-DiagonalMatrix multiplication");
DiagonalMatrix<T> R(A);
for (INDEX i=0; i<R.nRows(); i++) R[i] *= B[i];
return R;
}
//-----------------------------------------------------------------------------
// DiagonalMatrix-matrix multiplication
//-----------------------------------------------------------------------------
template<typename T>
DenseMatrix<T> operator*(const DiagonalMatrix<T>& A, const Matrix<T> &B)
{
DenseMatrix<T> C(A.nRows(), B.nCols(), true);
A.MultAB(B, C);
return C;
}
//-----------------------------------------------------------------------------
// matrix-DiagonalMatrix multiplication
//-----------------------------------------------------------------------------
template<typename T>
DenseMatrix<T> operator*(const Matrix<T> &B, const DiagonalMatrix<T>& A)
{
GCK(B, A, B.nCols()!=A.nRows(), "Matrix-DiagonalMatrix multiplication");
DenseMatrix<T> R(B); // makes a copy of r to return
for (INDEX j=0; j<R.nCols(); j++)
for (INDEX i=0; i<R.nRows(); i++)
R(i,j) *= A[j];
return R;
}
//-----------------------------------------------------------------------------
// DiagonalMatrix-vector multiplication
//-----------------------------------------------------------------------------
template<typename T>
DenseVector<T> operator*(const DiagonalMatrix<T>& A, const Vector<T> &b)
{
GCK(A, b, A.nCols()!=b.size(), "DiagonalMatrix-Vector multiplication");
DenseVector<T> r(b); // makes a copy of r to return
for (INDEX i=0; i<r.size(); i++)
r[i] *= A[i];
return r;
}
//-----------------------------------------------------------------------------
// vector-DiagonalMatrix multiplication
//-----------------------------------------------------------------------------
template<typename T>
DenseVector<T> operator*(const Vector<T> &b, const DiagonalMatrix<T>& A)
{
GCK(b, A, b.size()!=A.nRows(), "Matrix-DiagonalMatrix multiplication");
DenseVector<T> r(b); // makes a copy of r to return
for (INDEX i=0; i<r.size(); i++)
r[i] *= A[i];
return r;
}
//-----------------------------------------------------------------------------
// DiagonalMatrix-SparseMatrix multiplication
//-----------------------------------------------------------------------------
template<typename T>
SparseMatrix<T> operator*(const DiagonalMatrix<T> &A, const SparseMatrix<T>& B)
{
GCK(A, B, A.nCols()!=B.nRows() ,"DiagonalMatrix-SparseMatrix multiplication");
SparseMatrix<T> R(B);
CloneVector<T> d(A);
R.row_scale(d);
return R;
}
//-----------------------------------------------------------------------------
// DiagonalMatrix-scalar multiplication
//-----------------------------------------------------------------------------
template<typename T>
DiagonalMatrix<T> operator*(DiagonalMatrix<T> &A, const T s)
{
DiagonalMatrix<T> R(A);
R *= s;
return R;
}
//-----------------------------------------------------------------------------
// Commute with DiagonalMatrix * double
//-----------------------------------------------------------------------------
template<typename T>
DiagonalMatrix<T> operator*(const T s, const DiagonalMatrix<T>& A)
{
DiagonalMatrix<T> R(A);
R *= s;
return R;
}
//-----------------------------------------------------------------------------
// DiagonalMatrix addition
//-----------------------------------------------------------------------------
template<typename T>
DiagonalMatrix<T> operator+(const DiagonalMatrix<T> &A, const DiagonalMatrix<T> &B)
{
DiagonalMatrix<T> R(A);
R+=B;
return R;
}
//-----------------------------------------------------------------------------
// DiagonalMatrix subtraction
//-----------------------------------------------------------------------------
template<typename T>
DiagonalMatrix<T> operator-(const DiagonalMatrix<T> &A, const DiagonalMatrix<T> &B)
{
DiagonalMatrix<T> R(A);
return R-=B;
}
//-----------------------------------------------------------------------------
// template member definitions
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// Default constructor - optionally zeros the matrix
//-----------------------------------------------------------------------------
template<typename T>
DiagonalMatrix<T>::DiagonalMatrix(INDEX rows, bool zero)
: _data(NULL)
{
reset(rows, zero);
}
//-----------------------------------------------------------------------------
// copy constructor - makes a full copy
//-----------------------------------------------------------------------------
template<typename T>
DiagonalMatrix<T>::DiagonalMatrix(const DiagonalMatrix<T>& c)
: Matrix<T>(), _data(NULL)
{
reset(c);
}
//-----------------------------------------------------------------------------
// copy constructor from vector
//-----------------------------------------------------------------------------
template<typename T>
DiagonalMatrix<T>::DiagonalMatrix(const Vector<T>& v)
: Matrix<T>(), _data(NULL)
{
reset(v);
}
//-----------------------------------------------------------------------------
// destructor
//-----------------------------------------------------------------------------
template<typename T>
DiagonalMatrix<T>::~DiagonalMatrix()
{
_delete();
}
//-----------------------------------------------------------------------------
// deletes the data stored by this matrix
//-----------------------------------------------------------------------------
template<typename T>
void DiagonalMatrix<T>::_delete()
{
if (_data) delete _data;
}
//-----------------------------------------------------------------------------
// resizes the matrix, ignores nCols, optionally zeros
//-----------------------------------------------------------------------------
template<typename T>
void DiagonalMatrix<T>::reset(INDEX rows, INDEX cols, bool zero)
{
_delete();
_data = new DenseVector<T>(rows, zero);
}
//-----------------------------------------------------------------------------
// resizes the matrix, ignores nCols, optionally copies what fits
//-----------------------------------------------------------------------------
template<typename T>
void DiagonalMatrix<T>::resize(INDEX rows, INDEX cols, bool copy)
{
_data->resize(rows, copy);
}
//-----------------------------------------------------------------------------
// changes the diagonal of the matrix to a vector v (makes a copy)
//-----------------------------------------------------------------------------
template<typename T>
void DiagonalMatrix<T>::reset(const Vector<T>& v)
{
if (&v == _data) return; // check for self-reset
_delete();
_data = new DenseVector<T>(v);
}
//-----------------------------------------------------------------------------
// copys from another DiagonalMatrix
//-----------------------------------------------------------------------------
template<typename T>
void DiagonalMatrix<T>::reset(const DiagonalMatrix<T>& c)
{
reset(*(c._data));
}
//-----------------------------------------------------------------------------
// copys from a single column matrix
//-----------------------------------------------------------------------------
template<typename T>
void DiagonalMatrix<T>::reset(const DenseMatrix<T>& c)
{
GCHK(c.nCols()!=1,"DiagonalMatrix reset from DenseMatrix");
copy(c.ptr(),c.nRows(),c.nRows());
}
//-----------------------------------------------------------------------------
// resizes the matrix and copies data
//-----------------------------------------------------------------------------
template<typename T>
void DiagonalMatrix<T>::copy(const T * ptr, INDEX rows, INDEX cols)
{
if (_data) _data->reset(rows, false);
else _data = new DenseVector<T>(rows, false);
_data->copy(ptr,rows,cols);
}
//-----------------------------------------------------------------------------
// shallow reset from another DiagonalMatrix
//-----------------------------------------------------------------------------
template<typename T>
void DiagonalMatrix<T>::shallowreset(const DiagonalMatrix<T> &c)
{
_delete();
_data = new CloneVector<T>(*(c._data));
}
//-----------------------------------------------------------------------------
// shallow reset from Vector
//-----------------------------------------------------------------------------
template<typename T>
void DiagonalMatrix<T>::shallowreset(const Vector<T> &v)
{
_delete();
_data = new CloneVector<T>(v);
}
//-----------------------------------------------------------------------------
// shallow reset from a DenseMatrix
//-----------------------------------------------------------------------------
template<typename T>
void DiagonalMatrix<T>::shallowreset(const DenseMatrix<T> &c)
{
_delete();
_data = new CloneVector<T>(c,CLONE_COL);
}
//-----------------------------------------------------------------------------
// reference indexing operator - must throw an error if i!=j
//-----------------------------------------------------------------------------
template<typename T>
T& DiagonalMatrix<T>::operator()(INDEX i, INDEX j)
{
GCK(*this,*this,i!=j,"DiagonalMatrix: tried to index off diagonal");
return (*this)[i];
}
//-----------------------------------------------------------------------------
// value indexing operator - returns 0 if i!=j
//-----------------------------------------------------------------------------
template<typename T>
T DiagonalMatrix<T>::operator()(INDEX i, INDEX j) const
{
return (i==j) ? (*_data)(i) : (T)0;
}
//-----------------------------------------------------------------------------
// flat reference indexing operator
//-----------------------------------------------------------------------------
template<typename T>
T& DiagonalMatrix<T>::operator[](INDEX i)
{
return (*_data)(i);
}
//-----------------------------------------------------------------------------
// flat value indexing operator
//-----------------------------------------------------------------------------
template<typename T>
T DiagonalMatrix<T>::operator[](INDEX i) const
{
return (*_data)(i);
}
//-----------------------------------------------------------------------------
// returns the number of rows
//-----------------------------------------------------------------------------
template<typename T>
INDEX DiagonalMatrix<T>::nRows() const
{
return _data->size();
}
//-----------------------------------------------------------------------------
// returns the number of columns (same as nCols())
//-----------------------------------------------------------------------------
template<typename T>
INDEX DiagonalMatrix<T>::nCols() const
{
return _data->size();
}
//-----------------------------------------------------------------------------
// returns a pointer to the diagonal values, dangerous!
//-----------------------------------------------------------------------------
template<typename T>
T* DiagonalMatrix<T>::ptr() const
{
return _data->ptr();
}
//-----------------------------------------------------------------------------
// writes the diagonal to a binary data restart file
//-----------------------------------------------------------------------------
template<typename T>
void DiagonalMatrix<T>::write_restart(FILE *f) const
{
_data->write_restart(f);
}
//-----------------------------------------------------------------------------
// sets the diagonal to a constant
//-----------------------------------------------------------------------------
template<typename T>
DiagonalMatrix<T>& DiagonalMatrix<T>::operator=(const T v)
{
this->set_all_elements_to(v);
return *this;
}
//-----------------------------------------------------------------------------
// assignment operator with another diagonal matrix
//-----------------------------------------------------------------------------
template<typename T>
DiagonalMatrix<T>& DiagonalMatrix<T>::operator=(const DiagonalMatrix<T>& C)
{
reset(C);
return *this;
}
//-----------------------------------------------------------------------------
// writes a matlab command to duplicate this sparse matrix
//-----------------------------------------------------------------------------
template<typename T>
void DiagonalMatrix<T>::matlab(std::ostream &o, const std::string &s) const
{
_data->matlab(o, s);
o << s <<"=diag("<<s<<",0);\n";
}
//-----------------------------------------------------------------------------
// inverts this matrix, returns a reference
//-----------------------------------------------------------------------------
template<typename T>
DiagonalMatrix<T>& DiagonalMatrix<T>::inv_this()
{
for(INDEX i=0; i<nRows(); i++)
{
if ((*this)[i]!=T(0)) (*this)[i] = 1.0/(*this)[i];
else
{
std::cout<<"DiagonalMatrix::inv(): ("<<i<<","<<i<<")=0\n";
ERROR_FOR_BACKTRACE
exit(EXIT_FAILURE);
}
}
// Error check info
const double min_max = _data->minabs() / _data->maxabs();
if (min_max > 1e-14) return *this;
std::cout << "DiagonalMatrix::inv_this(): Warning: Matrix is badly scaled.";
std::cout << " RCOND = "<<min_max<<"\n";
return *this;
}
//-----------------------------------------------------------------------------
// returns the inverse of this matrix
//-----------------------------------------------------------------------------
template<typename T>
DiagonalMatrix<T> DiagonalMatrix<T>::inv() const
{
DiagonalMatrix<T> invA(*this); // Make copy of A to invert
for(INDEX i=0; i<invA.nRows(); i++)
{
if ((*this)[i]!=T(0)) invA[i]=1.0/(*this)[i];
else
{
std::cout<<"DiagonalMatrix::inv(): ("<<i<<","<<i<<")=0\n";
ERROR_FOR_BACKTRACE
exit(EXIT_FAILURE);
}
}
// Error check info
const double min_max = _data->minabs() / _data->maxabs();
if (min_max > 1e-14) return invA;
std::cout << "DiagonalMatrix::inv(): Warning: Matrix is badly scaled.";
std::cout << " RCOND = "<<min_max<<"\n";
return invA;
}
//-----------------------------------------------------------------------------
// computes a matrix inverse
//-----------------------------------------------------------------------------
inline DiagonalMatrix<double> inv(const DiagonalMatrix<double>& A)
{
return A.inv();
}
//-----------------------------------------------------------------------------
// general diagonalmatrix assigment
//-----------------------------------------------------------------------------
template<typename T>
void DiagonalMatrix<T>::_set_equal(const Matrix<T> &r)
{
this->resize(r.nRows(), r.nCols());
const Matrix<T> *pr = &r;
const SparseMatrix<T> *ps = dynamic_cast<const SparseMatrix<T>*> (pr);
const DiagonalMatrix<T> *pd = dynamic_cast<const DiagonalMatrix<T>*> (pr);
const Vector<T> *pv = dynamic_cast<const Vector<T>*> (pr);
if (ps) this->reset(ps->diag());
else if (pd) this->reset(*pd);
else if (pv) this->reset(*pv);
else
{
std::cout <<"Error in general diagonal matrix assignment\n";
exit(1);
}
}
//-----------------------------------------------------------------------------
// casts a generic matrix pointer into a DiagonalMatrix pointer - null if fail
//-----------------------------------------------------------------------------
template<typename T>
const DiagonalMatrix<T> *diag_cast(const Matrix<T> *m)
{
return dynamic_cast<const DiagonalMatrix<T>*>(m);
}
} // end namespace
#endif

Event Timeline