Page MenuHomec4science

cmmc_msm_gpu_kernel.cu
No OneTemporary

File Metadata

Created
Thu, Nov 7, 16:24

cmmc_msm_gpu_kernel.cu

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing authors: Mike Brown (ORNL), brownw@ornl.gov
------------------------------------------------------------------------- */
#ifndef CMMM_GPU_KERNEL
#define CMMM_GPU_KERNEL
#ifdef NV_KERNEL
#include "nv_kernel_def.h"
texture<float4> pos_tex;
texture<float> q_tex;
#ifdef _DOUBLE_DOUBLE
__inline double4 fetch_pos(const int& i, const double4 *pos)
{
return pos[i];
}
__inline double fetch_q(const int& i, const double *q)
{
return q[i];
}
#else
__inline float4 fetch_pos(const int& i, const float4 *pos)
{
return tex1Dfetch(pos_tex, i);
}
__inline float fetch_q(const int& i, const float *q)
{
return tex1Dfetch(q_tex, i);
}
#endif
#else
#pragma OPENCL EXTENSION cl_khr_fp64: enable
#define GLOBAL_ID_X get_global_id(0)
#define THREAD_ID_X get_local_id(0)
#define BLOCK_ID_X get_group_id(0)
#define BLOCK_SIZE_X get_local_size(0)
#define __syncthreads() barrier(CLK_LOCAL_MEM_FENCE)
#define __inline inline
#define fetch_pos(i,y) x_[i]
#define fetch_q(i,y) q_[i]
#define BLOCK_PAIR 64
#define MAX_SHARED_TYPES 8
#endif
#ifdef _DOUBLE_DOUBLE
#define numtyp double
#define numtyp2 double2
#define numtyp4 double4
#define acctyp double
#define acctyp4 double4
#endif
#ifdef _SINGLE_DOUBLE
#define numtyp float
#define numtyp2 float2
#define numtyp4 float4
#define acctyp double
#define acctyp4 double4
#endif
#ifndef numtyp
#define numtyp float
#define numtyp2 float2
#define numtyp4 float4
#define acctyp float
#define acctyp4 float4
#endif
#define SBBITS 30
#define NEIGHMASK 0x3FFFFFFF
__inline int sbmask(int j) { return j >> SBBITS & 3; }
__kernel void kernel_pair(__global numtyp4 *x_, __global numtyp4 *lj1,
__global numtyp4* lj3, const int lj_types,
__global numtyp *sp_lj_in, __global int *dev_nbor,
__global int *dev_packed, __global acctyp4 *ans,
__global acctyp *engv, const int eflag,
const int vflag, const int inum,
const int nbor_pitch, __global numtyp *q_,
const numtyp cut_coulsq, const numtyp qqrd2e,
const int smooth, const int t_per_atom) {
int tid=THREAD_ID_X;
int ii=mul24((int)BLOCK_ID_X,(int)(BLOCK_SIZE_X)/t_per_atom);
ii+=tid/t_per_atom;
int offset=tid%t_per_atom;
__local numtyp sp_lj[8];
sp_lj[0]=sp_lj_in[0];
sp_lj[1]=sp_lj_in[1];
sp_lj[2]=sp_lj_in[2];
sp_lj[3]=sp_lj_in[3];
sp_lj[4]=sp_lj_in[4];
sp_lj[5]=sp_lj_in[5];
sp_lj[6]=sp_lj_in[6];
sp_lj[7]=sp_lj_in[7];
__local numtyp _ia;
__local numtyp _ia2;
__local numtyp _ia3;
acctyp energy=(acctyp)0;
acctyp e_coul=(acctyp)0;
acctyp4 f;
f.x=(acctyp)0;
f.y=(acctyp)0;
f.z=(acctyp)0;
acctyp virial[6];
for (int i=0; i<6; i++)
virial[i]=(acctyp)0;
if (ii<inum) {
_ia=(numtyp)-1.0/sqrt(cut_coulsq);
_ia2=(numtyp)-1.0/cut_coulsq;
_ia3=_ia2*_ia;
__global int *nbor=dev_nbor+ii;
int i=*nbor;
nbor+=nbor_pitch;
int numj=*nbor;
nbor+=nbor_pitch;
int n_stride;
__global int *list_end;
if (dev_nbor==dev_packed) {
list_end=nbor+mul24(numj,nbor_pitch);
nbor+=mul24(offset,nbor_pitch);
n_stride=mul24(t_per_atom,nbor_pitch);
} else {
nbor=dev_packed+*nbor;
list_end=nbor+numj;
n_stride=t_per_atom;
nbor+=offset;
}
numtyp4 ix=fetch_pos(i,x_); //x_[i];
numtyp qtmp=fetch_q(i,q_);
int itype=ix.w;
for ( ; nbor<list_end; nbor+=n_stride) {
int j=*nbor;
numtyp factor_lj, factor_coul;
factor_lj = sp_lj[sbmask(j)];
factor_coul = (numtyp)1.0-sp_lj[sbmask(j)+4];
j &= NEIGHMASK;
numtyp4 jx=fetch_pos(j,x_); //x_[j];
int jtype=jx.w;
// Compute r12
numtyp delx = ix.x-jx.x;
numtyp dely = ix.y-jx.y;
numtyp delz = ix.z-jx.z;
numtyp rsq = delx*delx+dely*dely+delz*delz;
int mtype=itype*lj_types+jtype;
if (rsq<lj1[mtype].x) {
numtyp forcecoul, force_lj, force, inv1, inv2, prefactor;
numtyp r2inv=(numtyp)1.0/rsq;
if (rsq < lj1[mtype].y) {
if (lj3[mtype].x == (numtyp)2) {
inv1=r2inv*r2inv;
inv2=inv1*inv1;
} else if (lj3[mtype].x == (numtyp)1) {
inv2=r2inv*sqrt(r2inv);
inv1=inv2*inv2;
} else {
inv1=r2inv*r2inv*r2inv;
inv2=inv1;
}
force_lj = factor_lj*inv1*(lj1[mtype].z*inv2-lj1[mtype].w);
} else
force_lj = (numtyp)0.0;
numtyp ir, r2_ia2, r4_ia4, r6_ia6;
if (rsq < cut_coulsq) {
ir = (numtyp)1.0/sqrt(rsq);
prefactor = qqrd2e*qtmp*fetch_q(j,q_);
r2_ia2 = rsq*_ia2;
r4_ia4 = r2_ia2*r2_ia2;
if (smooth==0)
forcecoul = prefactor*(_ia3*((numtyp)-4.375+(numtyp)5.25*r2_ia2-
(numtyp)1.875*r4_ia4)-ir/rsq-
factor_coul*ir);
else {
r6_ia6 = r2_ia2*r4_ia4;
forcecoul = prefactor*(_ia3*((numtyp)-6.5625+(numtyp)11.8125*
r2_ia2-(numtyp)8.4375*r4_ia4+
(numtyp)2.1875*r6_ia6)-ir/rsq-
factor_coul*ir);
}
} else {
forcecoul = (numtyp)0.0;
prefactor = (numtyp)0.0;
}
force = forcecoul + force_lj * r2inv;
f.x+=delx*force;
f.y+=dely*force;
f.z+=delz*force;
if (eflag>0) {
if (rsq < cut_coulsq)
if (smooth==0)
e_coul += prefactor*(ir+_ia*((numtyp)2.1875-(numtyp)2.1875*r2_ia2+
(numtyp)1.3125*r4_ia4-
(numtyp)0.3125*r4_ia4*r2_ia2)-
factor_coul*ir);
else
e_coul += prefactor*(ir+_ia*((numtyp)2.4609375-(numtyp)3.28125*
r2_ia2+(numtyp)2.953125*r4_ia4-
(numtyp)1.40625*r6_ia6+
(numtyp)0.2734375*r4_ia4*r4_ia4));
if (rsq < lj1[mtype].y) {
energy += factor_lj*inv1*(lj3[mtype].y*inv2-lj3[mtype].z)-
lj3[mtype].w;
}
}
if (vflag>0) {
virial[0] += delx*delx*force;
virial[1] += dely*dely*force;
virial[2] += delz*delz*force;
virial[3] += delx*dely*force;
virial[4] += delx*delz*force;
virial[5] += dely*delz*force;
}
}
} // for nbor
} // if ii
// Reduce answers
if (t_per_atom>1) {
__local acctyp red_acc[6][BLOCK_PAIR];
red_acc[0][tid]=f.x;
red_acc[1][tid]=f.y;
red_acc[2][tid]=f.z;
red_acc[3][tid]=energy;
red_acc[4][tid]=e_coul;
for (unsigned int s=t_per_atom/2; s>0; s>>=1) {
if (offset < s) {
for (int r=0; r<5; r++)
red_acc[r][tid] += red_acc[r][tid+s];
}
}
f.x=red_acc[0][tid];
f.y=red_acc[1][tid];
f.z=red_acc[2][tid];
energy=red_acc[3][tid];
e_coul=red_acc[4][tid];
if (vflag>0) {
for (int r=0; r<6; r++)
red_acc[r][tid]=virial[r];
for (unsigned int s=t_per_atom/2; s>0; s>>=1) {
if (offset < s) {
for (int r=0; r<6; r++)
red_acc[r][tid] += red_acc[r][tid+s];
}
}
for (int r=0; r<6; r++)
virial[r]=red_acc[r][tid];
}
}
// Store answers
if (ii<inum && offset==0) {
__global acctyp *ap1=engv+ii;
if (eflag>0) {
*ap1=energy;
ap1+=inum;
*ap1=e_coul;
ap1+=inum;
}
if (vflag>0) {
for (int i=0; i<6; i++) {
*ap1=virial[i];
ap1+=inum;
}
}
ans[ii]=f;
} // if ii
}
__kernel void kernel_pair_fast(__global numtyp4 *x_, __global numtyp4 *lj1_in,
__global numtyp4* lj3_in,
__global numtyp* sp_lj_in,
__global int *dev_nbor, __global int *dev_packed,
__global acctyp4 *ans, __global acctyp *engv,
const int eflag, const int vflag, const int inum,
const int nbor_pitch, __global numtyp *q_,
const numtyp cut_coulsq, const numtyp qqrd2e,
const int smooth, const int t_per_atom) {
int tid=THREAD_ID_X;
int ii=mul24((int)BLOCK_ID_X,(int)(BLOCK_SIZE_X)/t_per_atom);
ii+=tid/t_per_atom;
int offset=tid%t_per_atom;
__local numtyp4 lj1[MAX_SHARED_TYPES*MAX_SHARED_TYPES];
__local numtyp4 lj3[MAX_SHARED_TYPES*MAX_SHARED_TYPES];
__local numtyp sp_lj[8];
if (tid<8)
sp_lj[tid]=sp_lj_in[tid];
if (tid<MAX_SHARED_TYPES*MAX_SHARED_TYPES) {
lj1[tid]=lj1_in[tid];
lj3[tid]=lj3_in[tid];
}
acctyp energy=(acctyp)0;
acctyp e_coul=(acctyp)0;
acctyp4 f;
f.x=(acctyp)0;
f.y=(acctyp)0;
f.z=(acctyp)0;
acctyp virial[6];
for (int i=0; i<6; i++)
virial[i]=(acctyp)0;
__local numtyp _ia;
__local numtyp _ia2;
__local numtyp _ia3;
_ia=(numtyp)-1.0/sqrt(cut_coulsq);
_ia2=(numtyp)1.0/cut_coulsq;
_ia3=_ia2*_ia;
__syncthreads();
if (ii<inum) {
__global int *nbor=dev_nbor+ii;
int i=*nbor;
nbor+=nbor_pitch;
int numj=*nbor;
nbor+=nbor_pitch;
int n_stride;
__global int *list_end;
if (dev_nbor==dev_packed) {
list_end=nbor+mul24(numj,nbor_pitch);
nbor+=mul24(offset,nbor_pitch);
n_stride=mul24(t_per_atom,nbor_pitch);
} else {
nbor=dev_packed+*nbor;
list_end=nbor+numj;
n_stride=t_per_atom;
nbor+=offset;
}
numtyp4 ix=fetch_pos(i,x_); //x_[i];
numtyp qtmp=fetch_q(i,q_);
int iw=ix.w;
int itype=mul24((int)MAX_SHARED_TYPES,iw);
for ( ; nbor<list_end; nbor+=n_stride) {
int j=*nbor;
numtyp factor_lj, factor_coul;
factor_lj = sp_lj[sbmask(j)];
factor_coul = (numtyp)1.0-sp_lj[sbmask(j)+4];
j &= NEIGHMASK;
numtyp4 jx=fetch_pos(j,x_); //x_[j];
int mtype=itype+jx.w;
// Compute r12
numtyp delx = ix.x-jx.x;
numtyp dely = ix.y-jx.y;
numtyp delz = ix.z-jx.z;
numtyp rsq = delx*delx+dely*dely+delz*delz;
if (rsq<lj1[mtype].x) {
numtyp forcecoul, force_lj, force, inv1, inv2, prefactor;
numtyp r2inv=(numtyp)1.0/rsq;
if (rsq < lj1[mtype].y) {
if (lj3[mtype].x == (numtyp)2) {
inv1=r2inv*r2inv;
inv2=inv1*inv1;
} else if (lj3[mtype].x == (numtyp)1) {
inv2=r2inv*sqrt(r2inv);
inv1=inv2*inv2;
} else {
inv1=r2inv*r2inv*r2inv;
inv2=inv1;
}
force_lj = factor_lj*inv1*(lj1[mtype].z*inv2-lj1[mtype].w);
} else
force_lj = (numtyp)0.0;
numtyp ir, r2_ia2, r4_ia4, r6_ia6;
if (rsq < cut_coulsq) {
ir = (numtyp)1.0/sqrt(rsq);
prefactor = qqrd2e*qtmp*fetch_q(j,q_);
r2_ia2 = rsq*_ia2;
r4_ia4 = r2_ia2*r2_ia2;
if (smooth==0)
forcecoul = prefactor*(_ia3*((numtyp)-4.375+(numtyp)5.25*r2_ia2-
(numtyp)1.875*r4_ia4)-ir/rsq-
factor_coul*ir);
else {
r6_ia6 = r2_ia2*r4_ia4;
forcecoul = prefactor*(_ia3*((numtyp)-6.5625+(numtyp)11.8125*
r2_ia2-(numtyp)8.4375*r4_ia4+
(numtyp)2.1875*r6_ia6)-ir/rsq-
factor_coul*ir);
}
} else {
forcecoul = (numtyp)0.0;
prefactor = (numtyp)0.0;
}
force = forcecoul + force_lj * r2inv;
f.x+=delx*force;
f.y+=dely*force;
f.z+=delz*force;
if (eflag>0) {
if (rsq < cut_coulsq)
if (smooth==0)
e_coul += prefactor*(ir+_ia*((numtyp)2.1875-(numtyp)2.1875*r2_ia2+
(numtyp)1.3125*r4_ia4-
(numtyp)0.3125*r4_ia4*r2_ia2)-
factor_coul*ir);
else
e_coul += prefactor*(ir+_ia*((numtyp)2.4609375-(numtyp)3.28125*
r2_ia2+(numtyp)2.953125*r4_ia4-
(numtyp)1.40625*r6_ia6+
(numtyp)0.2734375*r4_ia4*r4_ia4));
if (rsq < lj1[mtype].y) {
energy += factor_lj*inv1*(lj3[mtype].y*inv2-lj3[mtype].z)-
lj3[mtype].w;
}
}
if (vflag>0) {
virial[0] += delx*delx*force;
virial[1] += dely*dely*force;
virial[2] += delz*delz*force;
virial[3] += delx*dely*force;
virial[4] += delx*delz*force;
virial[5] += dely*delz*force;
}
}
} // for nbor
} // if ii
// Reduce answers
if (t_per_atom>1) {
__local acctyp red_acc[6][BLOCK_PAIR];
red_acc[0][tid]=f.x;
red_acc[1][tid]=f.y;
red_acc[2][tid]=f.z;
red_acc[3][tid]=energy;
red_acc[4][tid]=e_coul;
for (unsigned int s=t_per_atom/2; s>0; s>>=1) {
if (offset < s) {
for (int r=0; r<5; r++)
red_acc[r][tid] += red_acc[r][tid+s];
}
}
f.x=red_acc[0][tid];
f.y=red_acc[1][tid];
f.z=red_acc[2][tid];
energy=red_acc[3][tid];
e_coul=red_acc[4][tid];
if (vflag>0) {
for (int r=0; r<6; r++)
red_acc[r][tid]=virial[r];
for (unsigned int s=t_per_atom/2; s>0; s>>=1) {
if (offset < s) {
for (int r=0; r<6; r++)
red_acc[r][tid] += red_acc[r][tid+s];
}
}
for (int r=0; r<6; r++)
virial[r]=red_acc[r][tid];
}
}
// Store answers
if (ii<inum && offset==0) {
__global acctyp *ap1=engv+ii;
if (eflag>0) {
*ap1=energy;
ap1+=inum;
*ap1=e_coul;
ap1+=inum;
}
if (vflag>0) {
for (int i=0; i<6; i++) {
*ap1=virial[i];
ap1+=inum;
}
}
ans[ii]=f;
} // if ii*/
}
#endif

Event Timeline