Page MenuHomec4science

lal_yukawa_colloid.cu
No OneTemporary

File Metadata

Created
Fri, Jun 21, 18:54

lal_yukawa_colloid.cu

// **************************************************************************
// yukawa_colloid.cu
// -------------------
// Trung Dac Nguyen (ORNL)
//
// Device code for acceleration of the yukawa/colloid pair style
//
// __________________________________________________________________________
// This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
// __________________________________________________________________________
//
// begin :
// email : nguyentd@ornl.gov
// ***************************************************************************/
#ifdef NV_KERNEL
#include "lal_aux_fun1.h"
#ifndef _DOUBLE_DOUBLE
texture<float4> pos_tex;
texture<float> rad_tex;
#else
texture<int4,1> pos_tex;
texture<int2> rad_tex;
#endif
#else
#define pos_tex x_
#define rad_tex rad_
#endif
__kernel void k_yukawa_colloid(const __global numtyp4 *restrict x_,
const __global numtyp *restrict rad_,
const __global numtyp4 *restrict coeff,
const int lj_types,
const __global numtyp *restrict sp_lj_in,
const __global int *dev_nbor,
const __global int *dev_packed,
__global acctyp4 *restrict ans,
__global acctyp *restrict engv,
const int eflag, const int vflag, const int inum,
const int nbor_pitch, const int t_per_atom,
const numtyp kappa) {
int tid, ii, offset;
atom_info(t_per_atom,ii,tid,offset);
__local numtyp sp_lj[4];
sp_lj[0]=sp_lj_in[0];
sp_lj[1]=sp_lj_in[1];
sp_lj[2]=sp_lj_in[2];
sp_lj[3]=sp_lj_in[3];
acctyp energy=(acctyp)0;
acctyp4 f;
f.x=(acctyp)0; f.y=(acctyp)0; f.z=(acctyp)0;
acctyp virial[6];
for (int i=0; i<6; i++)
virial[i]=(acctyp)0;
if (ii<inum) {
int nbor, nbor_end;
int i, numj;
__local int n_stride;
nbor_info(dev_nbor,dev_packed,nbor_pitch,t_per_atom,ii,offset,i,numj,
n_stride,nbor_end,nbor);
numtyp4 ix; fetch4(ix,i,pos_tex); //x_[i];
numtyp radi; fetch(radi,i,rad_tex);
int itype=ix.w;
numtyp factor_lj;
for ( ; nbor<nbor_end; nbor+=n_stride) {
int j=dev_packed[nbor];
factor_lj = sp_lj[sbmask(j)];
j &= NEIGHMASK;
numtyp4 jx; fetch4(jx,j,pos_tex); //x_[j];
numtyp radj; fetch(radj,j,rad_tex);
int jtype=jx.w;
// Compute r12
numtyp delx = ix.x-jx.x;
numtyp dely = ix.y-jx.y;
numtyp delz = ix.z-jx.z;
numtyp rsq = delx*delx+dely*dely+delz*delz;
int mtype=itype*lj_types+jtype;
if (rsq<coeff[mtype].z) {
numtyp r = ucl_sqrt(rsq);
numtyp rinv = ucl_recip(r);
numtyp screening = ucl_exp(-kappa*(r-(radi+radj)));
numtyp force = coeff[mtype].x * screening;
force = factor_lj*force * rinv;
f.x+=delx*force;
f.y+=dely*force;
f.z+=delz*force;
if (eflag>0) {
numtyp e=coeff[mtype].x/kappa * screening;
energy+=factor_lj*(e-coeff[mtype].y);
}
if (vflag>0) {
virial[0] += delx*delx*force;
virial[1] += dely*dely*force;
virial[2] += delz*delz*force;
virial[3] += delx*dely*force;
virial[4] += delx*delz*force;
virial[5] += dely*delz*force;
}
}
} // for nbor
store_answers(f,energy,virial,ii,inum,tid,t_per_atom,offset,eflag,vflag,
ans,engv);
} // if ii
}
__kernel void k_yukawa_colloid_fast(const __global numtyp4 *restrict x_,
const __global numtyp *restrict rad_,
const __global numtyp4 *restrict coeff_in,
const __global numtyp *restrict sp_lj_in,
const __global int *dev_nbor,
const __global int *dev_packed,
__global acctyp4 *restrict ans,
__global acctyp *restrict engv,
const int eflag, const int vflag,
const int inum, const int nbor_pitch,
const int t_per_atom, const numtyp kappa) {
int tid, ii, offset;
atom_info(t_per_atom,ii,tid,offset);
__local numtyp4 coeff[MAX_SHARED_TYPES*MAX_SHARED_TYPES];
__local numtyp sp_lj[4];
if (tid<4)
sp_lj[tid]=sp_lj_in[tid];
if (tid<MAX_SHARED_TYPES*MAX_SHARED_TYPES) {
coeff[tid]=coeff_in[tid];
}
acctyp energy=(acctyp)0;
acctyp4 f;
f.x=(acctyp)0; f.y=(acctyp)0; f.z=(acctyp)0;
acctyp virial[6];
for (int i=0; i<6; i++)
virial[i]=(acctyp)0;
__syncthreads();
if (ii<inum) {
int nbor, nbor_end;
int i, numj;
__local int n_stride;
nbor_info(dev_nbor,dev_packed,nbor_pitch,t_per_atom,ii,offset,i,numj,
n_stride,nbor_end,nbor);
numtyp4 ix; fetch4(ix,i,pos_tex); //x_[i];
numtyp radi; fetch(radi,i,rad_tex);
int iw=ix.w;
int itype=fast_mul((int)MAX_SHARED_TYPES,iw);
numtyp factor_lj;
for ( ; nbor<nbor_end; nbor+=n_stride) {
int j=dev_packed[nbor];
factor_lj = sp_lj[sbmask(j)];
j &= NEIGHMASK;
numtyp4 jx; fetch4(jx,j,pos_tex); //x_[j];
numtyp radj; fetch(radj,j,rad_tex);
int mtype=itype+jx.w;
// Compute r12
numtyp delx = ix.x-jx.x;
numtyp dely = ix.y-jx.y;
numtyp delz = ix.z-jx.z;
numtyp rsq = delx*delx+dely*dely+delz*delz;
if (rsq<coeff[mtype].z) {
numtyp r = ucl_sqrt(rsq);
numtyp rinv = ucl_recip(r);
numtyp screening = ucl_exp(-kappa*(r-(radi+radj)));
numtyp force = coeff[mtype].x * screening;
force = factor_lj*force * rinv;
f.x+=delx*force;
f.y+=dely*force;
f.z+=delz*force;
if (eflag>0) {
numtyp e=coeff[mtype].x/kappa * screening;
energy+=factor_lj*(e-coeff[mtype].y);
}
if (vflag>0) {
virial[0] += delx*delx*force;
virial[1] += dely*dely*force;
virial[2] += delz*delz*force;
virial[3] += delx*dely*force;
virial[4] += delx*delz*force;
virial[5] += dely*delz*force;
}
}
} // for nbor
store_answers(f,energy,virial,ii,inum,tid,t_per_atom,offset,eflag,vflag,
ans,engv);
} // if ii
}

Event Timeline