Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91140067
dlaev2.f
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Nov 8, 07:43
Size
6 KB
Mime Type
text/html
Expires
Sun, Nov 10, 07:43 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22143631
Attached To
rLAMMPS lammps
dlaev2.f
View Options
*> \brief \b DLAEV2 computes the eigenvalues and eigenvectors of a 2-by-2 symmetric/Hermitian matrix.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLAEV2 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaev2.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaev2.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaev2.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DLAEV2( A, B, C, RT1, RT2, CS1, SN1 )
*
* .. Scalar Arguments ..
* DOUBLE PRECISION A, B, C, CS1, RT1, RT2, SN1
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DLAEV2 computes the eigendecomposition of a 2-by-2 symmetric matrix
*> [ A B ]
*> [ B C ].
*> On return, RT1 is the eigenvalue of larger absolute value, RT2 is the
*> eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right
*> eigenvector for RT1, giving the decomposition
*>
*> [ CS1 SN1 ] [ A B ] [ CS1 -SN1 ] = [ RT1 0 ]
*> [-SN1 CS1 ] [ B C ] [ SN1 CS1 ] [ 0 RT2 ].
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] A
*> \verbatim
*> A is DOUBLE PRECISION
*> The (1,1) element of the 2-by-2 matrix.
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is DOUBLE PRECISION
*> The (1,2) element and the conjugate of the (2,1) element of
*> the 2-by-2 matrix.
*> \endverbatim
*>
*> \param[in] C
*> \verbatim
*> C is DOUBLE PRECISION
*> The (2,2) element of the 2-by-2 matrix.
*> \endverbatim
*>
*> \param[out] RT1
*> \verbatim
*> RT1 is DOUBLE PRECISION
*> The eigenvalue of larger absolute value.
*> \endverbatim
*>
*> \param[out] RT2
*> \verbatim
*> RT2 is DOUBLE PRECISION
*> The eigenvalue of smaller absolute value.
*> \endverbatim
*>
*> \param[out] CS1
*> \verbatim
*> CS1 is DOUBLE PRECISION
*> \endverbatim
*>
*> \param[out] SN1
*> \verbatim
*> SN1 is DOUBLE PRECISION
*> The vector (CS1, SN1) is a unit right eigenvector for RT1.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date September 2012
*
*> \ingroup auxOTHERauxiliary
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> RT1 is accurate to a few ulps barring over/underflow.
*>
*> RT2 may be inaccurate if there is massive cancellation in the
*> determinant A*C-B*B; higher precision or correctly rounded or
*> correctly truncated arithmetic would be needed to compute RT2
*> accurately in all cases.
*>
*> CS1 and SN1 are accurate to a few ulps barring over/underflow.
*>
*> Overflow is possible only if RT1 is within a factor of 5 of overflow.
*> Underflow is harmless if the input data is 0 or exceeds
*> underflow_threshold / macheps.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE DLAEV2( A, B, C, RT1, RT2, CS1, SN1 )
*
* -- LAPACK auxiliary routine (version 3.4.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* September 2012
*
* .. Scalar Arguments ..
DOUBLE PRECISION A, B, C, CS1, RT1, RT2, SN1
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D0 )
DOUBLE PRECISION TWO
PARAMETER ( TWO = 2.0D0 )
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D0 )
DOUBLE PRECISION HALF
PARAMETER ( HALF = 0.5D0 )
* ..
* .. Local Scalars ..
INTEGER SGN1, SGN2
DOUBLE PRECISION AB, ACMN, ACMX, ACS, ADF, CS, CT, DF, RT, SM,
$ TB, TN
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, SQRT
* ..
* .. Executable Statements ..
*
* Compute the eigenvalues
*
SM = A + C
DF = A - C
ADF = ABS( DF )
TB = B + B
AB = ABS( TB )
IF( ABS( A ).GT.ABS( C ) ) THEN
ACMX = A
ACMN = C
ELSE
ACMX = C
ACMN = A
END IF
IF( ADF.GT.AB ) THEN
RT = ADF*SQRT( ONE+( AB / ADF )**2 )
ELSE IF( ADF.LT.AB ) THEN
RT = AB*SQRT( ONE+( ADF / AB )**2 )
ELSE
*
* Includes case AB=ADF=0
*
RT = AB*SQRT( TWO )
END IF
IF( SM.LT.ZERO ) THEN
RT1 = HALF*( SM-RT )
SGN1 = -1
*
* Order of execution important.
* To get fully accurate smaller eigenvalue,
* next line needs to be executed in higher precision.
*
RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
ELSE IF( SM.GT.ZERO ) THEN
RT1 = HALF*( SM+RT )
SGN1 = 1
*
* Order of execution important.
* To get fully accurate smaller eigenvalue,
* next line needs to be executed in higher precision.
*
RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
ELSE
*
* Includes case RT1 = RT2 = 0
*
RT1 = HALF*RT
RT2 = -HALF*RT
SGN1 = 1
END IF
*
* Compute the eigenvector
*
IF( DF.GE.ZERO ) THEN
CS = DF + RT
SGN2 = 1
ELSE
CS = DF - RT
SGN2 = -1
END IF
ACS = ABS( CS )
IF( ACS.GT.AB ) THEN
CT = -TB / CS
SN1 = ONE / SQRT( ONE+CT*CT )
CS1 = CT*SN1
ELSE
IF( AB.EQ.ZERO ) THEN
CS1 = ONE
SN1 = ZERO
ELSE
TN = -CS / TB
CS1 = ONE / SQRT( ONE+TN*TN )
SN1 = TN*CS1
END IF
END IF
IF( SGN1.EQ.SGN2 ) THEN
TN = CS1
CS1 = -SN1
SN1 = TN
END IF
RETURN
*
* End of DLAEV2
*
END
Event Timeline
Log In to Comment