Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F102268897
fix_wall_gran.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Feb 18, 23:00
Size
32 KB
Mime Type
text/x-c
Expires
Thu, Feb 20, 23:00 (2 d)
Engine
blob
Format
Raw Data
Handle
24320408
Attached To
rLAMMPS lammps
fix_wall_gran.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing authors: Leo Silbert (SNL), Gary Grest (SNL),
Dan Bolintineanu (SNL)
------------------------------------------------------------------------- */
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "fix_wall_gran.h"
#include "atom.h"
#include "domain.h"
#include "update.h"
#include "force.h"
#include "pair.h"
#include "modify.h"
#include "respa.h"
#include "math_const.h"
#include "memory.h"
#include "error.h"
using
namespace
LAMMPS_NS
;
using
namespace
FixConst
;
using
namespace
MathConst
;
// XYZ PLANE need to be 0,1,2
enum
{
XPLANE
=
0
,
YPLANE
=
1
,
ZPLANE
=
2
,
ZCYLINDER
,
REGION
};
enum
{
HOOKE
,
HOOKE_HISTORY
,
HERTZ_HISTORY
,
BONDED_HISTORY
};
enum
{
NONE
,
CONSTANT
,
EQUAL
};
#define BIG 1.0e20
/* ---------------------------------------------------------------------- */
FixWallGran
::
FixWallGran
(
LAMMPS
*
lmp
,
int
narg
,
char
**
arg
)
:
Fix
(
lmp
,
narg
,
arg
),
idregion
(
NULL
),
shearone
(
NULL
),
fix_rigid
(
NULL
),
mass_rigid
(
NULL
)
{
if
(
narg
<
4
)
error
->
all
(
FLERR
,
"Illegal fix wall/gran command"
);
if
(
!
atom
->
sphere_flag
)
error
->
all
(
FLERR
,
"Fix wall/gran requires atom style sphere"
);
create_attribute
=
1
;
// set interaction style
// disable bonded/history option for now
if
(
strcmp
(
arg
[
3
],
"hooke"
)
==
0
)
pairstyle
=
HOOKE
;
else
if
(
strcmp
(
arg
[
3
],
"hooke/history"
)
==
0
)
pairstyle
=
HOOKE_HISTORY
;
else
if
(
strcmp
(
arg
[
3
],
"hertz/history"
)
==
0
)
pairstyle
=
HERTZ_HISTORY
;
//else if (strcmp(arg[3],"bonded/history") == 0) pairstyle = BONDED_HISTORY;
else
error
->
all
(
FLERR
,
"Invalid fix wall/gran interaction style"
);
history
=
restart_peratom
=
1
;
if
(
pairstyle
==
HOOKE
)
history
=
restart_peratom
=
0
;
// wall/particle coefficients
int
iarg
;
if
(
pairstyle
!=
BONDED_HISTORY
)
{
if
(
narg
<
11
)
error
->
all
(
FLERR
,
"Illegal fix wall/gran command"
);
kn
=
force
->
numeric
(
FLERR
,
arg
[
4
]);
if
(
strcmp
(
arg
[
5
],
"NULL"
)
==
0
)
kt
=
kn
*
2.0
/
7.0
;
else
kt
=
force
->
numeric
(
FLERR
,
arg
[
5
]);
gamman
=
force
->
numeric
(
FLERR
,
arg
[
6
]);
if
(
strcmp
(
arg
[
7
],
"NULL"
)
==
0
)
gammat
=
0.5
*
gamman
;
else
gammat
=
force
->
numeric
(
FLERR
,
arg
[
7
]);
xmu
=
force
->
numeric
(
FLERR
,
arg
[
8
]);
int
dampflag
=
force
->
inumeric
(
FLERR
,
arg
[
9
]);
if
(
dampflag
==
0
)
gammat
=
0.0
;
if
(
kn
<
0.0
||
kt
<
0.0
||
gamman
<
0.0
||
gammat
<
0.0
||
xmu
<
0.0
||
xmu
>
10000.0
||
dampflag
<
0
||
dampflag
>
1
)
error
->
all
(
FLERR
,
"Illegal fix wall/gran command"
);
// convert Kn and Kt from pressure units to force/distance^2 if Hertzian
if
(
pairstyle
==
HERTZ_HISTORY
)
{
kn
/=
force
->
nktv2p
;
kt
/=
force
->
nktv2p
;
}
iarg
=
10
;
}
else
{
if
(
narg
<
10
)
error
->
all
(
FLERR
,
"Illegal fix wall/gran command"
);
E
=
force
->
numeric
(
FLERR
,
arg
[
4
]);
G
=
force
->
numeric
(
FLERR
,
arg
[
5
]);
SurfEnergy
=
force
->
numeric
(
FLERR
,
arg
[
6
]);
// Note: this doesn't get used, check w/ Jeremy?
gamman
=
force
->
numeric
(
FLERR
,
arg
[
7
]);
xmu
=
force
->
numeric
(
FLERR
,
arg
[
8
]);
// pois = E/(2.0*G) - 1.0;
// kn = 2.0*E/(3.0*(1.0+pois)*(1.0-pois));
// gammat=0.5*gamman;
iarg
=
9
;
}
// wallstyle args
idregion
=
NULL
;
if
(
strcmp
(
arg
[
iarg
],
"xplane"
)
==
0
)
{
if
(
narg
<
iarg
+
3
)
error
->
all
(
FLERR
,
"Illegal fix wall/gran command"
);
wallstyle
=
XPLANE
;
if
(
strcmp
(
arg
[
iarg
+
1
],
"NULL"
)
==
0
)
lo
=
-
BIG
;
else
lo
=
force
->
numeric
(
FLERR
,
arg
[
iarg
+
1
]);
if
(
strcmp
(
arg
[
iarg
+
2
],
"NULL"
)
==
0
)
hi
=
BIG
;
else
hi
=
force
->
numeric
(
FLERR
,
arg
[
iarg
+
2
]);
iarg
+=
3
;
}
else
if
(
strcmp
(
arg
[
iarg
],
"yplane"
)
==
0
)
{
if
(
narg
<
iarg
+
3
)
error
->
all
(
FLERR
,
"Illegal fix wall/gran command"
);
wallstyle
=
YPLANE
;
if
(
strcmp
(
arg
[
iarg
+
1
],
"NULL"
)
==
0
)
lo
=
-
BIG
;
else
lo
=
force
->
numeric
(
FLERR
,
arg
[
iarg
+
1
]);
if
(
strcmp
(
arg
[
iarg
+
2
],
"NULL"
)
==
0
)
hi
=
BIG
;
else
hi
=
force
->
numeric
(
FLERR
,
arg
[
iarg
+
2
]);
iarg
+=
3
;
}
else
if
(
strcmp
(
arg
[
iarg
],
"zplane"
)
==
0
)
{
if
(
narg
<
iarg
+
3
)
error
->
all
(
FLERR
,
"Illegal fix wall/gran command"
);
wallstyle
=
ZPLANE
;
if
(
strcmp
(
arg
[
iarg
+
1
],
"NULL"
)
==
0
)
lo
=
-
BIG
;
else
lo
=
force
->
numeric
(
FLERR
,
arg
[
iarg
+
1
]);
if
(
strcmp
(
arg
[
iarg
+
2
],
"NULL"
)
==
0
)
hi
=
BIG
;
else
hi
=
force
->
numeric
(
FLERR
,
arg
[
iarg
+
2
]);
iarg
+=
3
;
}
else
if
(
strcmp
(
arg
[
iarg
],
"zcylinder"
)
==
0
)
{
if
(
narg
<
iarg
+
2
)
error
->
all
(
FLERR
,
"Illegal fix wall/gran command"
);
wallstyle
=
ZCYLINDER
;
lo
=
hi
=
0.0
;
cylradius
=
force
->
numeric
(
FLERR
,
arg
[
iarg
+
1
]);
iarg
+=
2
;
}
else
if
(
strcmp
(
arg
[
iarg
],
"region"
)
==
0
)
{
if
(
narg
<
iarg
+
2
)
error
->
all
(
FLERR
,
"Illegal fix wall/gran command"
);
wallstyle
=
REGION
;
int
n
=
strlen
(
arg
[
iarg
+
1
])
+
1
;
idregion
=
new
char
[
n
];
strcpy
(
idregion
,
arg
[
iarg
+
1
]);
iarg
+=
2
;
}
// optional args
wiggle
=
0
;
wshear
=
0
;
while
(
iarg
<
narg
)
{
if
(
strcmp
(
arg
[
iarg
],
"wiggle"
)
==
0
)
{
if
(
iarg
+
4
>
narg
)
error
->
all
(
FLERR
,
"Illegal fix wall/gran command"
);
if
(
strcmp
(
arg
[
iarg
+
1
],
"x"
)
==
0
)
axis
=
0
;
else
if
(
strcmp
(
arg
[
iarg
+
1
],
"y"
)
==
0
)
axis
=
1
;
else
if
(
strcmp
(
arg
[
iarg
+
1
],
"z"
)
==
0
)
axis
=
2
;
else
error
->
all
(
FLERR
,
"Illegal fix wall/gran command"
);
amplitude
=
force
->
numeric
(
FLERR
,
arg
[
iarg
+
2
]);
period
=
force
->
numeric
(
FLERR
,
arg
[
iarg
+
3
]);
wiggle
=
1
;
iarg
+=
4
;
}
else
if
(
strcmp
(
arg
[
iarg
],
"shear"
)
==
0
)
{
if
(
iarg
+
3
>
narg
)
error
->
all
(
FLERR
,
"Illegal fix wall/gran command"
);
if
(
strcmp
(
arg
[
iarg
+
1
],
"x"
)
==
0
)
axis
=
0
;
else
if
(
strcmp
(
arg
[
iarg
+
1
],
"y"
)
==
0
)
axis
=
1
;
else
if
(
strcmp
(
arg
[
iarg
+
1
],
"z"
)
==
0
)
axis
=
2
;
else
error
->
all
(
FLERR
,
"Illegal fix wall/gran command"
);
vshear
=
force
->
numeric
(
FLERR
,
arg
[
iarg
+
2
]);
wshear
=
1
;
iarg
+=
3
;
}
else
error
->
all
(
FLERR
,
"Illegal fix wall/gran command"
);
}
if
(
wallstyle
==
XPLANE
&&
domain
->
xperiodic
)
error
->
all
(
FLERR
,
"Cannot use wall in periodic dimension"
);
if
(
wallstyle
==
YPLANE
&&
domain
->
yperiodic
)
error
->
all
(
FLERR
,
"Cannot use wall in periodic dimension"
);
if
(
wallstyle
==
ZPLANE
&&
domain
->
zperiodic
)
error
->
all
(
FLERR
,
"Cannot use wall in periodic dimension"
);
if
(
wallstyle
==
ZCYLINDER
&&
(
domain
->
xperiodic
||
domain
->
yperiodic
))
error
->
all
(
FLERR
,
"Cannot use wall in periodic dimension"
);
if
(
wiggle
&&
wshear
)
error
->
all
(
FLERR
,
"Cannot wiggle and shear fix wall/gran"
);
if
(
wiggle
&&
wallstyle
==
ZCYLINDER
&&
axis
!=
2
)
error
->
all
(
FLERR
,
"Invalid wiggle direction for fix wall/gran"
);
if
(
wshear
&&
wallstyle
==
XPLANE
&&
axis
==
0
)
error
->
all
(
FLERR
,
"Invalid shear direction for fix wall/gran"
);
if
(
wshear
&&
wallstyle
==
YPLANE
&&
axis
==
1
)
error
->
all
(
FLERR
,
"Invalid shear direction for fix wall/gran"
);
if
(
wshear
&&
wallstyle
==
ZPLANE
&&
axis
==
2
)
error
->
all
(
FLERR
,
"Invalid shear direction for fix wall/gran"
);
if
((
wiggle
||
wshear
)
&&
wallstyle
==
REGION
)
error
->
all
(
FLERR
,
"Cannot wiggle or shear with fix wall/gran/region"
);
// setup oscillations
if
(
wiggle
)
omega
=
2.0
*
MY_PI
/
period
;
// perform initial allocation of atom-based arrays
// register with Atom class
if
(
pairstyle
==
BONDED_HISTORY
)
sheardim
=
7
;
else
sheardim
=
3
;
shearone
=
NULL
;
grow_arrays
(
atom
->
nmax
);
atom
->
add_callback
(
0
);
atom
->
add_callback
(
1
);
nmax
=
0
;
mass_rigid
=
NULL
;
// initialize shear history as if particle is not touching region
// shearone will be NULL for wallstyle = REGION
if
(
history
&&
shearone
)
{
int
nlocal
=
atom
->
nlocal
;
for
(
int
i
=
0
;
i
<
nlocal
;
i
++
)
for
(
int
j
=
0
;
j
<
sheardim
;
j
++
)
shearone
[
i
][
j
]
=
0.0
;
}
time_origin
=
update
->
ntimestep
;
}
/* ---------------------------------------------------------------------- */
FixWallGran
::~
FixWallGran
()
{
// unregister callbacks to this fix from Atom class
atom
->
delete_callback
(
id
,
0
);
atom
->
delete_callback
(
id
,
1
);
// delete local storage
delete
[]
idregion
;
memory
->
destroy
(
shearone
);
memory
->
destroy
(
mass_rigid
);
}
/* ---------------------------------------------------------------------- */
int
FixWallGran
::
setmask
()
{
int
mask
=
0
;
mask
|=
POST_FORCE
;
mask
|=
POST_FORCE_RESPA
;
return
mask
;
}
/* ---------------------------------------------------------------------- */
void
FixWallGran
::
init
()
{
int
i
;
dt
=
update
->
dt
;
if
(
strstr
(
update
->
integrate_style
,
"respa"
))
nlevels_respa
=
((
Respa
*
)
update
->
integrate
)
->
nlevels
;
// check for FixRigid so can extract rigid body masses
fix_rigid
=
NULL
;
for
(
i
=
0
;
i
<
modify
->
nfix
;
i
++
)
if
(
modify
->
fix
[
i
]
->
rigid_flag
)
break
;
if
(
i
<
modify
->
nfix
)
fix_rigid
=
modify
->
fix
[
i
];
}
/* ---------------------------------------------------------------------- */
void
FixWallGran
::
setup
(
int
vflag
)
{
if
(
strstr
(
update
->
integrate_style
,
"verlet"
))
post_force
(
vflag
);
else
{
((
Respa
*
)
update
->
integrate
)
->
copy_flevel_f
(
nlevels_respa
-
1
);
post_force_respa
(
vflag
,
nlevels_respa
-
1
,
0
);
((
Respa
*
)
update
->
integrate
)
->
copy_f_flevel
(
nlevels_respa
-
1
);
}
}
/* ---------------------------------------------------------------------- */
void
FixWallGran
::
post_force
(
int
vflag
)
{
int
i
,
j
;
double
dx
,
dy
,
dz
,
del1
,
del2
,
delxy
,
delr
,
rsq
,
rwall
,
meff
;
double
vwall
[
3
];
// do not update shear history during setup
shearupdate
=
1
;
if
(
update
->
setupflag
)
shearupdate
=
0
;
// if just reneighbored:
// update rigid body masses for owned atoms if using FixRigid
// body[i] = which body atom I is in, -1 if none
// mass_body = mass of each rigid body
if
(
neighbor
->
ago
==
0
&&
fix_rigid
)
{
int
tmp
;
int
*
body
=
(
int
*
)
fix_rigid
->
extract
(
"body"
,
tmp
);
double
*
mass_body
=
(
double
*
)
fix_rigid
->
extract
(
"masstotal"
,
tmp
);
if
(
atom
->
nmax
>
nmax
)
{
memory
->
destroy
(
mass_rigid
);
nmax
=
atom
->
nmax
;
memory
->
create
(
mass_rigid
,
nmax
,
"wall/gran:mass_rigid"
);
}
int
nlocal
=
atom
->
nlocal
;
for
(
i
=
0
;
i
<
nlocal
;
i
++
)
{
if
(
body
[
i
]
>=
0
)
mass_rigid
[
i
]
=
mass_body
[
body
[
i
]];
else
mass_rigid
[
i
]
=
0.0
;
}
}
// set position of wall to initial settings and velocity to 0.0
// if wiggle or shear, set wall position and velocity accordingly
double
wlo
=
lo
;
double
whi
=
hi
;
vwall
[
0
]
=
vwall
[
1
]
=
vwall
[
2
]
=
0.0
;
if
(
wiggle
)
{
double
arg
=
omega
*
(
update
->
ntimestep
-
time_origin
)
*
dt
;
if
(
wallstyle
==
axis
)
{
wlo
=
lo
+
amplitude
-
amplitude
*
cos
(
arg
);
whi
=
hi
+
amplitude
-
amplitude
*
cos
(
arg
);
}
vwall
[
axis
]
=
amplitude
*
omega
*
sin
(
arg
);
}
else
if
(
wshear
)
vwall
[
axis
]
=
vshear
;
// loop over all my atoms
// rsq = distance from wall
// dx,dy,dz = signed distance from wall
// for rotating cylinder, reset vwall based on particle position
// skip atom if not close enough to wall
// if wall was set to NULL, it's skipped since lo/hi are infinity
// compute force and torque on atom if close enough to wall
// via wall potential matched to pair potential
// set shear if pair potential stores history
double
**
x
=
atom
->
x
;
double
**
v
=
atom
->
v
;
double
**
f
=
atom
->
f
;
double
**
omega
=
atom
->
omega
;
double
**
torque
=
atom
->
torque
;
double
*
radius
=
atom
->
radius
;
double
*
rmass
=
atom
->
rmass
;
int
*
mask
=
atom
->
mask
;
int
nlocal
=
atom
->
nlocal
;
rwall
=
0.0
;
for
(
int
i
=
0
;
i
<
nlocal
;
i
++
)
{
if
(
mask
[
i
]
&
groupbit
)
{
dx
=
dy
=
dz
=
0.0
;
if
(
wallstyle
==
XPLANE
)
{
del1
=
x
[
i
][
0
]
-
wlo
;
del2
=
whi
-
x
[
i
][
0
];
if
(
del1
<
del2
)
dx
=
del1
;
else
dx
=
-
del2
;
}
else
if
(
wallstyle
==
YPLANE
)
{
del1
=
x
[
i
][
1
]
-
wlo
;
del2
=
whi
-
x
[
i
][
1
];
if
(
del1
<
del2
)
dy
=
del1
;
else
dy
=
-
del2
;
}
else
if
(
wallstyle
==
ZPLANE
)
{
del1
=
x
[
i
][
2
]
-
wlo
;
del2
=
whi
-
x
[
i
][
2
];
if
(
del1
<
del2
)
dz
=
del1
;
else
dz
=
-
del2
;
}
else
if
(
wallstyle
==
ZCYLINDER
)
{
delxy
=
sqrt
(
x
[
i
][
0
]
*
x
[
i
][
0
]
+
x
[
i
][
1
]
*
x
[
i
][
1
]);
delr
=
cylradius
-
delxy
;
if
(
delr
>
radius
[
i
])
{
dz
=
cylradius
;
rwall
=
0.0
;
}
else
{
dx
=
-
delr
/
delxy
*
x
[
i
][
0
];
dy
=
-
delr
/
delxy
*
x
[
i
][
1
];
// rwall = -2r_c if inside cylinder, 2r_c outside
rwall
=
(
delxy
<
cylradius
)
?
-
2
*
cylradius
:
2
*
cylradius
;
if
(
wshear
&&
axis
!=
2
)
{
vwall
[
0
]
+=
vshear
*
x
[
i
][
1
]
/
delxy
;
vwall
[
1
]
+=
-
vshear
*
x
[
i
][
0
]
/
delxy
;
vwall
[
2
]
=
0.0
;
}
}
}
rsq
=
dx
*
dx
+
dy
*
dy
+
dz
*
dz
;
if
(
rsq
>
radius
[
i
]
*
radius
[
i
])
{
if
(
history
)
for
(
j
=
0
;
j
<
sheardim
;
j
++
)
shearone
[
i
][
j
]
=
0.0
;
}
else
{
// meff = effective mass of sphere
// if I is part of rigid body, use body mass
meff
=
rmass
[
i
];
if
(
fix_rigid
&&
mass_rigid
[
i
]
>
0.0
)
meff
=
mass_rigid
[
i
];
// invoke sphere/wall interaction
if
(
pairstyle
==
HOOKE
)
hooke
(
rsq
,
dx
,
dy
,
dz
,
vwall
,
v
[
i
],
f
[
i
],
omega
[
i
],
torque
[
i
],
radius
[
i
],
meff
);
else
if
(
pairstyle
==
HOOKE_HISTORY
)
hooke_history
(
rsq
,
dx
,
dy
,
dz
,
vwall
,
v
[
i
],
f
[
i
],
omega
[
i
],
torque
[
i
],
radius
[
i
],
meff
,
shearone
[
i
]);
else
if
(
pairstyle
==
HERTZ_HISTORY
)
hertz_history
(
rsq
,
dx
,
dy
,
dz
,
vwall
,
rwall
,
v
[
i
],
f
[
i
],
omega
[
i
],
torque
[
i
],
radius
[
i
],
meff
,
shearone
[
i
]);
else
if
(
pairstyle
==
BONDED_HISTORY
)
bonded_history
(
rsq
,
dx
,
dy
,
dz
,
vwall
,
rwall
,
v
[
i
],
f
[
i
],
omega
[
i
],
torque
[
i
],
radius
[
i
],
meff
,
shearone
[
i
]);
}
}
}
}
/* ---------------------------------------------------------------------- */
void
FixWallGran
::
post_force_respa
(
int
vflag
,
int
ilevel
,
int
iloop
)
{
if
(
ilevel
==
nlevels_respa
-
1
)
post_force
(
vflag
);
}
/* ---------------------------------------------------------------------- */
void
FixWallGran
::
hooke
(
double
rsq
,
double
dx
,
double
dy
,
double
dz
,
double
*
vwall
,
double
*
v
,
double
*
f
,
double
*
omega
,
double
*
torque
,
double
radius
,
double
meff
)
{
double
r
,
vr1
,
vr2
,
vr3
,
vnnr
,
vn1
,
vn2
,
vn3
,
vt1
,
vt2
,
vt3
;
double
wr1
,
wr2
,
wr3
,
damp
,
ccel
,
vtr1
,
vtr2
,
vtr3
,
vrel
;
double
fn
,
fs
,
ft
,
fs1
,
fs2
,
fs3
,
fx
,
fy
,
fz
,
tor1
,
tor2
,
tor3
,
rinv
,
rsqinv
;
r
=
sqrt
(
rsq
);
rinv
=
1.0
/
r
;
rsqinv
=
1.0
/
rsq
;
// relative translational velocity
vr1
=
v
[
0
]
-
vwall
[
0
];
vr2
=
v
[
1
]
-
vwall
[
1
];
vr3
=
v
[
2
]
-
vwall
[
2
];
// normal component
vnnr
=
vr1
*
dx
+
vr2
*
dy
+
vr3
*
dz
;
vn1
=
dx
*
vnnr
*
rsqinv
;
vn2
=
dy
*
vnnr
*
rsqinv
;
vn3
=
dz
*
vnnr
*
rsqinv
;
// tangential component
vt1
=
vr1
-
vn1
;
vt2
=
vr2
-
vn2
;
vt3
=
vr3
-
vn3
;
// relative rotational velocity
wr1
=
radius
*
omega
[
0
]
*
rinv
;
wr2
=
radius
*
omega
[
1
]
*
rinv
;
wr3
=
radius
*
omega
[
2
]
*
rinv
;
// normal forces = Hookian contact + normal velocity damping
damp
=
meff
*
gamman
*
vnnr
*
rsqinv
;
ccel
=
kn
*
(
radius
-
r
)
*
rinv
-
damp
;
// relative velocities
vtr1
=
vt1
-
(
dz
*
wr2
-
dy
*
wr3
);
vtr2
=
vt2
-
(
dx
*
wr3
-
dz
*
wr1
);
vtr3
=
vt3
-
(
dy
*
wr1
-
dx
*
wr2
);
vrel
=
vtr1
*
vtr1
+
vtr2
*
vtr2
+
vtr3
*
vtr3
;
vrel
=
sqrt
(
vrel
);
// force normalization
fn
=
xmu
*
fabs
(
ccel
*
r
);
fs
=
meff
*
gammat
*
vrel
;
if
(
vrel
!=
0.0
)
ft
=
MIN
(
fn
,
fs
)
/
vrel
;
else
ft
=
0.0
;
// tangential force due to tangential velocity damping
fs1
=
-
ft
*
vtr1
;
fs2
=
-
ft
*
vtr2
;
fs3
=
-
ft
*
vtr3
;
// forces & torques
fx
=
dx
*
ccel
+
fs1
;
fy
=
dy
*
ccel
+
fs2
;
fz
=
dz
*
ccel
+
fs3
;
f
[
0
]
+=
fx
;
f
[
1
]
+=
fy
;
f
[
2
]
+=
fz
;
tor1
=
rinv
*
(
dy
*
fs3
-
dz
*
fs2
);
tor2
=
rinv
*
(
dz
*
fs1
-
dx
*
fs3
);
tor3
=
rinv
*
(
dx
*
fs2
-
dy
*
fs1
);
torque
[
0
]
-=
radius
*
tor1
;
torque
[
1
]
-=
radius
*
tor2
;
torque
[
2
]
-=
radius
*
tor3
;
}
/* ---------------------------------------------------------------------- */
void
FixWallGran
::
hooke_history
(
double
rsq
,
double
dx
,
double
dy
,
double
dz
,
double
*
vwall
,
double
*
v
,
double
*
f
,
double
*
omega
,
double
*
torque
,
double
radius
,
double
meff
,
double
*
shear
)
{
double
r
,
vr1
,
vr2
,
vr3
,
vnnr
,
vn1
,
vn2
,
vn3
,
vt1
,
vt2
,
vt3
;
double
wr1
,
wr2
,
wr3
,
damp
,
ccel
,
vtr1
,
vtr2
,
vtr3
,
vrel
;
double
fn
,
fs
,
fs1
,
fs2
,
fs3
,
fx
,
fy
,
fz
,
tor1
,
tor2
,
tor3
;
double
shrmag
,
rsht
,
rinv
,
rsqinv
;
r
=
sqrt
(
rsq
);
rinv
=
1.0
/
r
;
rsqinv
=
1.0
/
rsq
;
// relative translational velocity
vr1
=
v
[
0
]
-
vwall
[
0
];
vr2
=
v
[
1
]
-
vwall
[
1
];
vr3
=
v
[
2
]
-
vwall
[
2
];
// normal component
vnnr
=
vr1
*
dx
+
vr2
*
dy
+
vr3
*
dz
;
vn1
=
dx
*
vnnr
*
rsqinv
;
vn2
=
dy
*
vnnr
*
rsqinv
;
vn3
=
dz
*
vnnr
*
rsqinv
;
// tangential component
vt1
=
vr1
-
vn1
;
vt2
=
vr2
-
vn2
;
vt3
=
vr3
-
vn3
;
// relative rotational velocity
wr1
=
radius
*
omega
[
0
]
*
rinv
;
wr2
=
radius
*
omega
[
1
]
*
rinv
;
wr3
=
radius
*
omega
[
2
]
*
rinv
;
// normal forces = Hookian contact + normal velocity damping
damp
=
meff
*
gamman
*
vnnr
*
rsqinv
;
ccel
=
kn
*
(
radius
-
r
)
*
rinv
-
damp
;
// relative velocities
vtr1
=
vt1
-
(
dz
*
wr2
-
dy
*
wr3
);
vtr2
=
vt2
-
(
dx
*
wr3
-
dz
*
wr1
);
vtr3
=
vt3
-
(
dy
*
wr1
-
dx
*
wr2
);
vrel
=
vtr1
*
vtr1
+
vtr2
*
vtr2
+
vtr3
*
vtr3
;
vrel
=
sqrt
(
vrel
);
// shear history effects
if
(
shearupdate
)
{
shear
[
0
]
+=
vtr1
*
dt
;
shear
[
1
]
+=
vtr2
*
dt
;
shear
[
2
]
+=
vtr3
*
dt
;
}
shrmag
=
sqrt
(
shear
[
0
]
*
shear
[
0
]
+
shear
[
1
]
*
shear
[
1
]
+
shear
[
2
]
*
shear
[
2
]);
// rotate shear displacements
rsht
=
shear
[
0
]
*
dx
+
shear
[
1
]
*
dy
+
shear
[
2
]
*
dz
;
rsht
=
rsht
*
rsqinv
;
if
(
shearupdate
)
{
shear
[
0
]
-=
rsht
*
dx
;
shear
[
1
]
-=
rsht
*
dy
;
shear
[
2
]
-=
rsht
*
dz
;
}
// tangential forces = shear + tangential velocity damping
fs1
=
-
(
kt
*
shear
[
0
]
+
meff
*
gammat
*
vtr1
);
fs2
=
-
(
kt
*
shear
[
1
]
+
meff
*
gammat
*
vtr2
);
fs3
=
-
(
kt
*
shear
[
2
]
+
meff
*
gammat
*
vtr3
);
// rescale frictional displacements and forces if needed
fs
=
sqrt
(
fs1
*
fs1
+
fs2
*
fs2
+
fs3
*
fs3
);
fn
=
xmu
*
fabs
(
ccel
*
r
);
if
(
fs
>
fn
)
{
if
(
shrmag
!=
0.0
)
{
shear
[
0
]
=
(
fn
/
fs
)
*
(
shear
[
0
]
+
meff
*
gammat
*
vtr1
/
kt
)
-
meff
*
gammat
*
vtr1
/
kt
;
shear
[
1
]
=
(
fn
/
fs
)
*
(
shear
[
1
]
+
meff
*
gammat
*
vtr2
/
kt
)
-
meff
*
gammat
*
vtr2
/
kt
;
shear
[
2
]
=
(
fn
/
fs
)
*
(
shear
[
2
]
+
meff
*
gammat
*
vtr3
/
kt
)
-
meff
*
gammat
*
vtr3
/
kt
;
fs1
*=
fn
/
fs
;
fs2
*=
fn
/
fs
;
fs3
*=
fn
/
fs
;
}
else
fs1
=
fs2
=
fs3
=
0.0
;
}
// forces & torques
fx
=
dx
*
ccel
+
fs1
;
fy
=
dy
*
ccel
+
fs2
;
fz
=
dz
*
ccel
+
fs3
;
f
[
0
]
+=
fx
;
f
[
1
]
+=
fy
;
f
[
2
]
+=
fz
;
tor1
=
rinv
*
(
dy
*
fs3
-
dz
*
fs2
);
tor2
=
rinv
*
(
dz
*
fs1
-
dx
*
fs3
);
tor3
=
rinv
*
(
dx
*
fs2
-
dy
*
fs1
);
torque
[
0
]
-=
radius
*
tor1
;
torque
[
1
]
-=
radius
*
tor2
;
torque
[
2
]
-=
radius
*
tor3
;
}
/* ---------------------------------------------------------------------- */
void
FixWallGran
::
hertz_history
(
double
rsq
,
double
dx
,
double
dy
,
double
dz
,
double
*
vwall
,
double
rwall
,
double
*
v
,
double
*
f
,
double
*
omega
,
double
*
torque
,
double
radius
,
double
meff
,
double
*
shear
)
{
double
r
,
vr1
,
vr2
,
vr3
,
vnnr
,
vn1
,
vn2
,
vn3
,
vt1
,
vt2
,
vt3
;
double
wr1
,
wr2
,
wr3
,
damp
,
ccel
,
vtr1
,
vtr2
,
vtr3
,
vrel
;
double
fn
,
fs
,
fs1
,
fs2
,
fs3
,
fx
,
fy
,
fz
,
tor1
,
tor2
,
tor3
;
double
shrmag
,
rsht
,
polyhertz
,
rinv
,
rsqinv
;
r
=
sqrt
(
rsq
);
rinv
=
1.0
/
r
;
rsqinv
=
1.0
/
rsq
;
// relative translational velocity
vr1
=
v
[
0
]
-
vwall
[
0
];
vr2
=
v
[
1
]
-
vwall
[
1
];
vr3
=
v
[
2
]
-
vwall
[
2
];
// normal component
vnnr
=
vr1
*
dx
+
vr2
*
dy
+
vr3
*
dz
;
vn1
=
dx
*
vnnr
/
rsq
;
vn2
=
dy
*
vnnr
/
rsq
;
vn3
=
dz
*
vnnr
/
rsq
;
// tangential component
vt1
=
vr1
-
vn1
;
vt2
=
vr2
-
vn2
;
vt3
=
vr3
-
vn3
;
// relative rotational velocity
wr1
=
radius
*
omega
[
0
]
*
rinv
;
wr2
=
radius
*
omega
[
1
]
*
rinv
;
wr3
=
radius
*
omega
[
2
]
*
rinv
;
// normal forces = Hertzian contact + normal velocity damping
// rwall = 0 is flat wall case
// rwall positive or negative is curved wall
// will break (as it should) if rwall is negative and
// its absolute value < radius of particle
damp
=
meff
*
gamman
*
vnnr
*
rsqinv
;
ccel
=
kn
*
(
radius
-
r
)
*
rinv
-
damp
;
if
(
rwall
==
0.0
)
polyhertz
=
sqrt
((
radius
-
r
)
*
radius
);
else
polyhertz
=
sqrt
((
radius
-
r
)
*
radius
*
rwall
/
(
rwall
+
radius
));
ccel
*=
polyhertz
;
// relative velocities
vtr1
=
vt1
-
(
dz
*
wr2
-
dy
*
wr3
);
vtr2
=
vt2
-
(
dx
*
wr3
-
dz
*
wr1
);
vtr3
=
vt3
-
(
dy
*
wr1
-
dx
*
wr2
);
vrel
=
vtr1
*
vtr1
+
vtr2
*
vtr2
+
vtr3
*
vtr3
;
vrel
=
sqrt
(
vrel
);
// shear history effects
if
(
shearupdate
)
{
shear
[
0
]
+=
vtr1
*
dt
;
shear
[
1
]
+=
vtr2
*
dt
;
shear
[
2
]
+=
vtr3
*
dt
;
}
shrmag
=
sqrt
(
shear
[
0
]
*
shear
[
0
]
+
shear
[
1
]
*
shear
[
1
]
+
shear
[
2
]
*
shear
[
2
]);
// rotate shear displacements
rsht
=
shear
[
0
]
*
dx
+
shear
[
1
]
*
dy
+
shear
[
2
]
*
dz
;
rsht
=
rsht
*
rsqinv
;
if
(
shearupdate
)
{
shear
[
0
]
-=
rsht
*
dx
;
shear
[
1
]
-=
rsht
*
dy
;
shear
[
2
]
-=
rsht
*
dz
;
}
// tangential forces = shear + tangential velocity damping
fs1
=
-
polyhertz
*
(
kt
*
shear
[
0
]
+
meff
*
gammat
*
vtr1
);
fs2
=
-
polyhertz
*
(
kt
*
shear
[
1
]
+
meff
*
gammat
*
vtr2
);
fs3
=
-
polyhertz
*
(
kt
*
shear
[
2
]
+
meff
*
gammat
*
vtr3
);
// rescale frictional displacements and forces if needed
fs
=
sqrt
(
fs1
*
fs1
+
fs2
*
fs2
+
fs3
*
fs3
);
fn
=
xmu
*
fabs
(
ccel
*
r
);
if
(
fs
>
fn
)
{
if
(
shrmag
!=
0.0
)
{
shear
[
0
]
=
(
fn
/
fs
)
*
(
shear
[
0
]
+
meff
*
gammat
*
vtr1
/
kt
)
-
meff
*
gammat
*
vtr1
/
kt
;
shear
[
1
]
=
(
fn
/
fs
)
*
(
shear
[
1
]
+
meff
*
gammat
*
vtr2
/
kt
)
-
meff
*
gammat
*
vtr2
/
kt
;
shear
[
2
]
=
(
fn
/
fs
)
*
(
shear
[
2
]
+
meff
*
gammat
*
vtr3
/
kt
)
-
meff
*
gammat
*
vtr3
/
kt
;
fs1
*=
fn
/
fs
;
fs2
*=
fn
/
fs
;
fs3
*=
fn
/
fs
;
}
else
fs1
=
fs2
=
fs3
=
0.0
;
}
// forces & torques
fx
=
dx
*
ccel
+
fs1
;
fy
=
dy
*
ccel
+
fs2
;
fz
=
dz
*
ccel
+
fs3
;
f
[
0
]
+=
fx
;
f
[
1
]
+=
fy
;
f
[
2
]
+=
fz
;
tor1
=
rinv
*
(
dy
*
fs3
-
dz
*
fs2
);
tor2
=
rinv
*
(
dz
*
fs1
-
dx
*
fs3
);
tor3
=
rinv
*
(
dx
*
fs2
-
dy
*
fs1
);
torque
[
0
]
-=
radius
*
tor1
;
torque
[
1
]
-=
radius
*
tor2
;
torque
[
2
]
-=
radius
*
tor3
;
}
/* ---------------------------------------------------------------------- */
void
FixWallGran
::
bonded_history
(
double
rsq
,
double
dx
,
double
dy
,
double
dz
,
double
*
vwall
,
double
rwall
,
double
*
v
,
double
*
f
,
double
*
omega
,
double
*
torque
,
double
radius
,
double
meff
,
double
*
shear
)
{
double
r
,
vr1
,
vr2
,
vr3
,
vnnr
,
vn1
,
vn2
,
vn3
,
vt1
,
vt2
,
vt3
;
double
wr1
,
wr2
,
wr3
,
damp
,
ccel
,
vtr1
,
vtr2
,
vtr3
,
vrel
;
double
fn
,
fs
,
fs1
,
fs2
,
fs3
,
fx
,
fy
,
fz
,
tor1
,
tor2
,
tor3
;
double
shrmag
,
rsht
,
polyhertz
,
rinv
,
rsqinv
;
double
pois
,
E_eff
,
G_eff
,
rad_eff
;
double
a0
,
Fcrit
,
delcrit
,
delcritinv
;
double
overlap
,
olapsq
,
olapcubed
,
sqrtterm
,
tmp
,
keyterm
,
keyterm2
,
keyterm3
;
double
aovera0
,
foverFc
;
double
gammatsuji
;
double
ktwist
,
kroll
,
twistcrit
,
rollcrit
;
double
relrot1
,
relrot2
,
relrot3
,
vrl1
,
vrl2
,
vrl3
,
vrlmag
,
vrlmaginv
;
double
magtwist
,
magtortwist
;
double
magrollsq
,
magroll
,
magrollinv
,
magtorroll
;
r
=
sqrt
(
rsq
);
rinv
=
1.0
/
r
;
rsqinv
=
1.0
/
rsq
;
// relative translational velocity
vr1
=
v
[
0
]
-
vwall
[
0
];
vr2
=
v
[
1
]
-
vwall
[
1
];
vr3
=
v
[
2
]
-
vwall
[
2
];
// normal component
vnnr
=
vr1
*
dx
+
vr2
*
dy
+
vr3
*
dz
;
vn1
=
dx
*
vnnr
/
rsq
;
vn2
=
dy
*
vnnr
/
rsq
;
vn3
=
dz
*
vnnr
/
rsq
;
// tangential component
vt1
=
vr1
-
vn1
;
vt2
=
vr2
-
vn2
;
vt3
=
vr3
-
vn3
;
// relative rotational velocity
wr1
=
radius
*
omega
[
0
]
*
rinv
;
wr2
=
radius
*
omega
[
1
]
*
rinv
;
wr3
=
radius
*
omega
[
2
]
*
rinv
;
// normal forces = Hertzian contact + normal velocity damping
// material properties: currently assumes identical materials
pois
=
E
/
(
2.0
*
G
)
-
1.0
;
E_eff
=
0.5
*
E
/
(
1.0
-
pois
*
pois
);
G_eff
=
G
/
(
4.0
-
2.0
*
pois
);
// rwall = 0 is infinite wall radius of curvature (flat wall)
if
(
rwall
==
0
)
rad_eff
=
radius
;
else
rad_eff
=
radius
*
rwall
/
(
radius
+
rwall
);
Fcrit
=
rad_eff
*
(
3.0
*
M_PI
*
SurfEnergy
);
a0
=
pow
(
9.0
*
M_PI
*
SurfEnergy
*
rad_eff
*
rad_eff
/
E_eff
,
1.0
/
3.0
);
delcrit
=
1.0
/
rad_eff
*
(
0.5
*
a0
*
a0
/
pow
(
6.0
,
1.0
/
3.0
));
delcritinv
=
1.0
/
delcrit
;
overlap
=
(
radius
-
r
)
*
delcritinv
;
olapsq
=
overlap
*
overlap
;
olapcubed
=
olapsq
*
overlap
;
sqrtterm
=
sqrt
(
1.0
+
olapcubed
);
tmp
=
2.0
+
olapcubed
+
2.0
*
sqrtterm
;
keyterm
=
pow
(
tmp
,
THIRD
);
keyterm2
=
olapsq
/
keyterm
;
keyterm3
=
sqrt
(
overlap
+
keyterm2
+
keyterm
);
aovera0
=
pow
(
6.0
,
-
TWOTHIRDS
)
*
(
keyterm3
+
sqrt
(
2.0
*
overlap
-
keyterm2
-
keyterm
+
4.0
/
keyterm3
));
foverFc
=
4.0
*
((
aovera0
*
aovera0
*
aovera0
)
-
pow
(
aovera0
,
1.5
));
ccel
=
Fcrit
*
foverFc
*
rinv
;
// damp = meff*gamman*vnnr*rsqinv;
// ccel = kn*(radius-r)*rinv - damp;
// polyhertz = sqrt((radius-r)*radius);
// ccel *= polyhertz;
// use Tsuji et al form
polyhertz
=
1.2728
-
4.2783
*
0.9
+
11.087
*
0.9
*
0.9
-
22.348
*
0.9
*
0.9
*
0.9
+
27.467
*
0.9
*
0.9
*
0.9
*
0.9
-
18.022
*
0.9
*
0.9
*
0.9
*
0.9
*
0.9
+
4.8218
*
0.9
*
0.9
*
0.9
*
0.9
*
0.9
*
0.9
;
gammatsuji
=
0.2
*
sqrt
(
meff
*
kn
);
damp
=
gammatsuji
*
vnnr
/
rsq
;
ccel
=
ccel
-
polyhertz
*
damp
;
// relative velocities
vtr1
=
vt1
-
(
dz
*
wr2
-
dy
*
wr3
);
vtr2
=
vt2
-
(
dx
*
wr3
-
dz
*
wr1
);
vtr3
=
vt3
-
(
dy
*
wr1
-
dx
*
wr2
);
vrel
=
vtr1
*
vtr1
+
vtr2
*
vtr2
+
vtr3
*
vtr3
;
vrel
=
sqrt
(
vrel
);
// shear history effects
if
(
shearupdate
)
{
shear
[
0
]
+=
vtr1
*
dt
;
shear
[
1
]
+=
vtr2
*
dt
;
shear
[
2
]
+=
vtr3
*
dt
;
}
shrmag
=
sqrt
(
shear
[
0
]
*
shear
[
0
]
+
shear
[
1
]
*
shear
[
1
]
+
shear
[
2
]
*
shear
[
2
]);
// rotate shear displacements
rsht
=
shear
[
0
]
*
dx
+
shear
[
1
]
*
dy
+
shear
[
2
]
*
dz
;
rsht
=
rsht
*
rsqinv
;
if
(
shearupdate
)
{
shear
[
0
]
-=
rsht
*
dx
;
shear
[
1
]
-=
rsht
*
dy
;
shear
[
2
]
-=
rsht
*
dz
;
}
// tangential forces = shear + tangential velocity damping
fs1
=
-
polyhertz
*
(
kt
*
shear
[
0
]
+
meff
*
gammat
*
vtr1
);
fs2
=
-
polyhertz
*
(
kt
*
shear
[
1
]
+
meff
*
gammat
*
vtr2
);
fs3
=
-
polyhertz
*
(
kt
*
shear
[
2
]
+
meff
*
gammat
*
vtr3
);
kt
=
8.0
*
G_eff
*
a0
*
aovera0
;
// shear damping uses Tsuji et al form also
fs1
=
-
kt
*
shear
[
0
]
-
polyhertz
*
gammatsuji
*
vtr1
;
fs2
=
-
kt
*
shear
[
1
]
-
polyhertz
*
gammatsuji
*
vtr2
;
fs3
=
-
kt
*
shear
[
2
]
-
polyhertz
*
gammatsuji
*
vtr3
;
// rescale frictional displacements and forces if needed
fs
=
sqrt
(
fs1
*
fs1
+
fs2
*
fs2
+
fs3
*
fs3
);
fn
=
xmu
*
fabs
(
ccel
*
r
+
2.0
*
Fcrit
);
if
(
fs
>
fn
)
{
if
(
shrmag
!=
0.0
)
{
shear
[
0
]
=
(
fn
/
fs
)
*
(
shear
[
0
]
+
polyhertz
*
gammatsuji
*
vtr1
/
kt
)
-
polyhertz
*
gammatsuji
*
vtr1
/
kt
;
shear
[
1
]
=
(
fn
/
fs
)
*
(
shear
[
1
]
+
polyhertz
*
gammatsuji
*
vtr2
/
kt
)
-
polyhertz
*
gammatsuji
*
vtr2
/
kt
;
shear
[
2
]
=
(
fn
/
fs
)
*
(
shear
[
2
]
+
polyhertz
*
gammatsuji
*
vtr3
/
kt
)
-
polyhertz
*
gammatsuji
*
vtr3
/
kt
;
fs1
*=
fn
/
fs
;
fs2
*=
fn
/
fs
;
fs3
*=
fn
/
fs
;
}
else
fs1
=
fs2
=
fs3
=
0.0
;
}
// calculate twisting and rolling components of torque
// NOTE: this assumes spheres!
relrot1
=
omega
[
0
];
relrot2
=
omega
[
1
];
relrot3
=
omega
[
2
];
// rolling velocity
// NOTE: this assumes mondisperse spheres!
vrl1
=
-
rad_eff
*
rinv
*
(
relrot2
*
dz
-
relrot3
*
dy
);
vrl2
=
-
rad_eff
*
rinv
*
(
relrot3
*
dx
-
relrot1
*
dz
);
vrl3
=
-
rad_eff
*
rinv
*
(
relrot1
*
dy
-
relrot2
*
dx
);
vrlmag
=
sqrt
(
vrl1
*
vrl1
+
vrl2
*
vrl2
+
vrl3
*
vrl3
);
if
(
vrlmag
!=
0.0
)
vrlmaginv
=
1.0
/
vrlmag
;
else
vrlmaginv
=
0.0
;
// bond history effects
shear
[
3
]
+=
vrl1
*
dt
;
shear
[
4
]
+=
vrl2
*
dt
;
shear
[
5
]
+=
vrl3
*
dt
;
// rotate bonded displacements correctly
double
rlt
=
shear
[
3
]
*
dx
+
shear
[
4
]
*
dy
+
shear
[
5
]
*
dz
;
rlt
/=
rsq
;
shear
[
3
]
-=
rlt
*
dx
;
shear
[
4
]
-=
rlt
*
dy
;
shear
[
5
]
-=
rlt
*
dz
;
// twisting torque
magtwist
=
rinv
*
(
relrot1
*
dx
+
relrot2
*
dy
+
relrot3
*
dz
);
shear
[
6
]
+=
magtwist
*
dt
;
ktwist
=
0.5
*
kt
*
(
a0
*
aovera0
)
*
(
a0
*
aovera0
);
magtortwist
=
-
ktwist
*
shear
[
6
]
-
0.5
*
polyhertz
*
gammatsuji
*
(
a0
*
aovera0
)
*
(
a0
*
aovera0
)
*
magtwist
;
twistcrit
=
TWOTHIRDS
*
a0
*
aovera0
*
Fcrit
;
if
(
fabs
(
magtortwist
)
>
twistcrit
)
magtortwist
=
-
twistcrit
*
magtwist
/
fabs
(
magtwist
);
// rolling torque
magrollsq
=
shear
[
3
]
*
shear
[
3
]
+
shear
[
4
]
*
shear
[
4
]
+
shear
[
5
]
*
shear
[
5
];
magroll
=
sqrt
(
magrollsq
);
if
(
magroll
!=
0.0
)
magrollinv
=
1.0
/
magroll
;
else
magrollinv
=
0.0
;
kroll
=
1.0
*
4.0
*
Fcrit
*
pow
(
aovera0
,
1.5
);
magtorroll
=
-
kroll
*
magroll
-
0.1
*
gammat
*
vrlmag
;
rollcrit
=
0.01
;
if
(
magroll
>
rollcrit
)
magtorroll
=
-
kroll
*
rollcrit
;
// forces & torques
fx
=
dx
*
ccel
+
fs1
;
fy
=
dy
*
ccel
+
fs2
;
fz
=
dz
*
ccel
+
fs3
;
f
[
0
]
+=
fx
;
f
[
1
]
+=
fy
;
f
[
2
]
+=
fz
;
tor1
=
rinv
*
(
dy
*
fs3
-
dz
*
fs2
);
tor2
=
rinv
*
(
dz
*
fs1
-
dx
*
fs3
);
tor3
=
rinv
*
(
dx
*
fs2
-
dy
*
fs1
);
torque
[
0
]
-=
radius
*
tor1
;
torque
[
1
]
-=
radius
*
tor2
;
torque
[
2
]
-=
radius
*
tor3
;
torque
[
0
]
+=
magtortwist
*
dx
*
rinv
;
torque
[
1
]
+=
magtortwist
*
dy
*
rinv
;
torque
[
2
]
+=
magtortwist
*
dz
*
rinv
;
torque
[
0
]
+=
magtorroll
*
(
shear
[
4
]
*
dz
-
shear
[
5
]
*
dy
)
*
rinv
*
magrollinv
;
torque
[
1
]
+=
magtorroll
*
(
shear
[
5
]
*
dx
-
shear
[
3
]
*
dz
)
*
rinv
*
magrollinv
;
torque
[
2
]
+=
magtorroll
*
(
shear
[
3
]
*
dy
-
shear
[
4
]
*
dx
)
*
rinv
*
magrollinv
;
}
/* ----------------------------------------------------------------------
memory usage of local atom-based arrays
------------------------------------------------------------------------- */
double
FixWallGran
::
memory_usage
()
{
int
nmax
=
atom
->
nmax
;
double
bytes
=
0.0
;
if
(
history
)
bytes
+=
nmax
*
sheardim
*
sizeof
(
double
);
// shear history
if
(
fix_rigid
)
bytes
+=
nmax
*
sizeof
(
int
);
// mass_rigid
return
bytes
;
}
/* ----------------------------------------------------------------------
allocate local atom-based arrays
------------------------------------------------------------------------- */
void
FixWallGran
::
grow_arrays
(
int
nmax
)
{
if
(
history
)
memory
->
grow
(
shearone
,
nmax
,
sheardim
,
"fix_wall_gran:shearone"
);
}
/* ----------------------------------------------------------------------
copy values within local atom-based arrays
------------------------------------------------------------------------- */
void
FixWallGran
::
copy_arrays
(
int
i
,
int
j
,
int
delflag
)
{
if
(
history
)
for
(
int
m
=
0
;
m
<
sheardim
;
m
++
)
shearone
[
j
][
m
]
=
shearone
[
i
][
m
];
}
/* ----------------------------------------------------------------------
initialize one atom's array values, called when atom is created
------------------------------------------------------------------------- */
void
FixWallGran
::
set_arrays
(
int
i
)
{
if
(
history
)
for
(
int
m
=
0
;
m
<
sheardim
;
m
++
)
shearone
[
i
][
m
]
=
0
;
}
/* ----------------------------------------------------------------------
pack values in local atom-based arrays for exchange with another proc
------------------------------------------------------------------------- */
int
FixWallGran
::
pack_exchange
(
int
i
,
double
*
buf
)
{
if
(
!
history
)
return
0
;
int
n
=
0
;
for
(
int
m
=
0
;
m
<
sheardim
;
m
++
)
buf
[
n
++
]
=
shearone
[
i
][
m
];
return
n
;
}
/* ----------------------------------------------------------------------
unpack values into local atom-based arrays after exchange
------------------------------------------------------------------------- */
int
FixWallGran
::
unpack_exchange
(
int
nlocal
,
double
*
buf
)
{
if
(
!
history
)
return
0
;
int
n
=
0
;
for
(
int
m
=
0
;
m
<
sheardim
;
m
++
)
shearone
[
nlocal
][
m
]
=
buf
[
n
++
];
return
n
;
}
/* ----------------------------------------------------------------------
pack values in local atom-based arrays for restart file
------------------------------------------------------------------------- */
int
FixWallGran
::
pack_restart
(
int
i
,
double
*
buf
)
{
if
(
!
history
)
return
0
;
int
n
=
0
;
buf
[
n
++
]
=
sheardim
+
1
;
for
(
int
m
=
0
;
m
<
sheardim
;
m
++
)
buf
[
n
++
]
=
shearone
[
i
][
m
];
return
n
;
}
/* ----------------------------------------------------------------------
unpack values from atom->extra array to restart the fix
------------------------------------------------------------------------- */
void
FixWallGran
::
unpack_restart
(
int
nlocal
,
int
nth
)
{
if
(
!
history
)
return
;
double
**
extra
=
atom
->
extra
;
// skip to Nth set of extra values
int
m
=
0
;
for
(
int
i
=
0
;
i
<
nth
;
i
++
)
m
+=
static_cast
<
int
>
(
extra
[
nlocal
][
m
]);
m
++
;
for
(
int
i
=
0
;
i
<
sheardim
;
i
++
)
shearone
[
nlocal
][
i
]
=
extra
[
nlocal
][
m
++
];
}
/* ----------------------------------------------------------------------
maxsize of any atom's restart data
------------------------------------------------------------------------- */
int
FixWallGran
::
maxsize_restart
()
{
if
(
!
history
)
return
0
;
return
1
+
sheardim
;
}
/* ----------------------------------------------------------------------
size of atom nlocal's restart data
------------------------------------------------------------------------- */
int
FixWallGran
::
size_restart
(
int
nlocal
)
{
if
(
!
history
)
return
0
;
return
1
+
sheardim
;
}
/* ---------------------------------------------------------------------- */
void
FixWallGran
::
reset_dt
()
{
dt
=
update
->
dt
;
}
Event Timeline
Log In to Comment