Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91405411
fix_wall_gran.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sun, Nov 10, 19:23
Size
32 KB
Mime Type
text/x-c
Expires
Tue, Nov 12, 19:23 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22258466
Attached To
rLAMMPS lammps
fix_wall_gran.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing authors: Leo Silbert (SNL), Gary Grest (SNL),
Dan Bolintineanu (SNL)
------------------------------------------------------------------------- */
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "fix_wall_gran.h"
#include "atom.h"
#include "domain.h"
#include "update.h"
#include "force.h"
#include "pair.h"
#include "modify.h"
#include "respa.h"
#include "math_const.h"
#include "memory.h"
#include "error.h"
using namespace LAMMPS_NS;
using namespace FixConst;
using namespace MathConst;
// XYZ PLANE need to be 0,1,2
enum{XPLANE=0,YPLANE=1,ZPLANE=2,ZCYLINDER,REGION};
enum{HOOKE,HOOKE_HISTORY,HERTZ_HISTORY,BONDED_HISTORY};
enum{NONE,CONSTANT,EQUAL};
#define BIG 1.0e20
/* ---------------------------------------------------------------------- */
FixWallGran::FixWallGran(LAMMPS *lmp, int narg, char **arg) :
Fix(lmp, narg, arg), idregion(NULL), shearone(NULL), fix_rigid(NULL), mass_rigid(NULL)
{
if (narg < 4) error->all(FLERR,"Illegal fix wall/gran command");
if (!atom->sphere_flag)
error->all(FLERR,"Fix wall/gran requires atom style sphere");
create_attribute = 1;
// set interaction style
// disable bonded/history option for now
if (strcmp(arg[3],"hooke") == 0) pairstyle = HOOKE;
else if (strcmp(arg[3],"hooke/history") == 0) pairstyle = HOOKE_HISTORY;
else if (strcmp(arg[3],"hertz/history") == 0) pairstyle = HERTZ_HISTORY;
//else if (strcmp(arg[3],"bonded/history") == 0) pairstyle = BONDED_HISTORY;
else error->all(FLERR,"Invalid fix wall/gran interaction style");
history = restart_peratom = 1;
if (pairstyle == HOOKE) history = restart_peratom = 0;
// wall/particle coefficients
int iarg;
if (pairstyle != BONDED_HISTORY) {
if (narg < 11) error->all(FLERR,"Illegal fix wall/gran command");
kn = force->numeric(FLERR,arg[4]);
if (strcmp(arg[5],"NULL") == 0) kt = kn * 2.0/7.0;
else kt = force->numeric(FLERR,arg[5]);
gamman = force->numeric(FLERR,arg[6]);
if (strcmp(arg[7],"NULL") == 0) gammat = 0.5 * gamman;
else gammat = force->numeric(FLERR,arg[7]);
xmu = force->numeric(FLERR,arg[8]);
int dampflag = force->inumeric(FLERR,arg[9]);
if (dampflag == 0) gammat = 0.0;
if (kn < 0.0 || kt < 0.0 || gamman < 0.0 || gammat < 0.0 ||
xmu < 0.0 || xmu > 10000.0 || dampflag < 0 || dampflag > 1)
error->all(FLERR,"Illegal fix wall/gran command");
// convert Kn and Kt from pressure units to force/distance^2 if Hertzian
if (pairstyle == HERTZ_HISTORY) {
kn /= force->nktv2p;
kt /= force->nktv2p;
}
iarg = 10;
}
else {
if (narg < 10) error->all(FLERR,"Illegal fix wall/gran command");
E = force->numeric(FLERR,arg[4]);
G = force->numeric(FLERR,arg[5]);
SurfEnergy = force->numeric(FLERR,arg[6]);
// Note: this doesn't get used, check w/ Jeremy?
gamman = force->numeric(FLERR,arg[7]);
xmu = force->numeric(FLERR,arg[8]);
// pois = E/(2.0*G) - 1.0;
// kn = 2.0*E/(3.0*(1.0+pois)*(1.0-pois));
// gammat=0.5*gamman;
iarg = 9;
}
// wallstyle args
idregion = NULL;
if (strcmp(arg[iarg],"xplane") == 0) {
if (narg < iarg+3) error->all(FLERR,"Illegal fix wall/gran command");
wallstyle = XPLANE;
if (strcmp(arg[iarg+1],"NULL") == 0) lo = -BIG;
else lo = force->numeric(FLERR,arg[iarg+1]);
if (strcmp(arg[iarg+2],"NULL") == 0) hi = BIG;
else hi = force->numeric(FLERR,arg[iarg+2]);
iarg += 3;
} else if (strcmp(arg[iarg],"yplane") == 0) {
if (narg < iarg+3) error->all(FLERR,"Illegal fix wall/gran command");
wallstyle = YPLANE;
if (strcmp(arg[iarg+1],"NULL") == 0) lo = -BIG;
else lo = force->numeric(FLERR,arg[iarg+1]);
if (strcmp(arg[iarg+2],"NULL") == 0) hi = BIG;
else hi = force->numeric(FLERR,arg[iarg+2]);
iarg += 3;
} else if (strcmp(arg[iarg],"zplane") == 0) {
if (narg < iarg+3) error->all(FLERR,"Illegal fix wall/gran command");
wallstyle = ZPLANE;
if (strcmp(arg[iarg+1],"NULL") == 0) lo = -BIG;
else lo = force->numeric(FLERR,arg[iarg+1]);
if (strcmp(arg[iarg+2],"NULL") == 0) hi = BIG;
else hi = force->numeric(FLERR,arg[iarg+2]);
iarg += 3;
} else if (strcmp(arg[iarg],"zcylinder") == 0) {
if (narg < iarg+2) error->all(FLERR,"Illegal fix wall/gran command");
wallstyle = ZCYLINDER;
lo = hi = 0.0;
cylradius = force->numeric(FLERR,arg[iarg+1]);
iarg += 2;
} else if (strcmp(arg[iarg],"region") == 0) {
if (narg < iarg+2) error->all(FLERR,"Illegal fix wall/gran command");
wallstyle = REGION;
int n = strlen(arg[iarg+1]) + 1;
idregion = new char[n];
strcpy(idregion,arg[iarg+1]);
iarg += 2;
}
// optional args
wiggle = 0;
wshear = 0;
while (iarg < narg) {
if (strcmp(arg[iarg],"wiggle") == 0) {
if (iarg+4 > narg) error->all(FLERR,"Illegal fix wall/gran command");
if (strcmp(arg[iarg+1],"x") == 0) axis = 0;
else if (strcmp(arg[iarg+1],"y") == 0) axis = 1;
else if (strcmp(arg[iarg+1],"z") == 0) axis = 2;
else error->all(FLERR,"Illegal fix wall/gran command");
amplitude = force->numeric(FLERR,arg[iarg+2]);
period = force->numeric(FLERR,arg[iarg+3]);
wiggle = 1;
iarg += 4;
} else if (strcmp(arg[iarg],"shear") == 0) {
if (iarg+3 > narg) error->all(FLERR,"Illegal fix wall/gran command");
if (strcmp(arg[iarg+1],"x") == 0) axis = 0;
else if (strcmp(arg[iarg+1],"y") == 0) axis = 1;
else if (strcmp(arg[iarg+1],"z") == 0) axis = 2;
else error->all(FLERR,"Illegal fix wall/gran command");
vshear = force->numeric(FLERR,arg[iarg+2]);
wshear = 1;
iarg += 3;
} else error->all(FLERR,"Illegal fix wall/gran command");
}
if (wallstyle == XPLANE && domain->xperiodic)
error->all(FLERR,"Cannot use wall in periodic dimension");
if (wallstyle == YPLANE && domain->yperiodic)
error->all(FLERR,"Cannot use wall in periodic dimension");
if (wallstyle == ZPLANE && domain->zperiodic)
error->all(FLERR,"Cannot use wall in periodic dimension");
if (wallstyle == ZCYLINDER && (domain->xperiodic || domain->yperiodic))
error->all(FLERR,"Cannot use wall in periodic dimension");
if (wiggle && wshear)
error->all(FLERR,"Cannot wiggle and shear fix wall/gran");
if (wiggle && wallstyle == ZCYLINDER && axis != 2)
error->all(FLERR,"Invalid wiggle direction for fix wall/gran");
if (wshear && wallstyle == XPLANE && axis == 0)
error->all(FLERR,"Invalid shear direction for fix wall/gran");
if (wshear && wallstyle == YPLANE && axis == 1)
error->all(FLERR,"Invalid shear direction for fix wall/gran");
if (wshear && wallstyle == ZPLANE && axis == 2)
error->all(FLERR,"Invalid shear direction for fix wall/gran");
if ((wiggle || wshear) && wallstyle == REGION)
error->all(FLERR,"Cannot wiggle or shear with fix wall/gran/region");
// setup oscillations
if (wiggle) omega = 2.0*MY_PI / period;
// perform initial allocation of atom-based arrays
// register with Atom class
if (pairstyle == BONDED_HISTORY) sheardim = 7;
else sheardim = 3;
shearone = NULL;
grow_arrays(atom->nmax);
atom->add_callback(0);
atom->add_callback(1);
nmax = 0;
mass_rigid = NULL;
// initialize shear history as if particle is not touching region
// shearone will be NULL for wallstyle = REGION
if (history && shearone) {
int nlocal = atom->nlocal;
for (int i = 0; i < nlocal; i++)
for (int j = 0; j < sheardim; j++)
shearone[i][j] = 0.0;
}
time_origin = update->ntimestep;
}
/* ---------------------------------------------------------------------- */
FixWallGran::~FixWallGran()
{
// unregister callbacks to this fix from Atom class
atom->delete_callback(id,0);
atom->delete_callback(id,1);
// delete local storage
delete [] idregion;
memory->destroy(shearone);
memory->destroy(mass_rigid);
}
/* ---------------------------------------------------------------------- */
int FixWallGran::setmask()
{
int mask = 0;
mask |= POST_FORCE;
mask |= POST_FORCE_RESPA;
return mask;
}
/* ---------------------------------------------------------------------- */
void FixWallGran::init()
{
int i;
dt = update->dt;
if (strstr(update->integrate_style,"respa"))
nlevels_respa = ((Respa *) update->integrate)->nlevels;
// check for FixRigid so can extract rigid body masses
fix_rigid = NULL;
for (i = 0; i < modify->nfix; i++)
if (modify->fix[i]->rigid_flag) break;
if (i < modify->nfix) fix_rigid = modify->fix[i];
}
/* ---------------------------------------------------------------------- */
void FixWallGran::setup(int vflag)
{
if (strstr(update->integrate_style,"verlet"))
post_force(vflag);
else {
((Respa *) update->integrate)->copy_flevel_f(nlevels_respa-1);
post_force_respa(vflag,nlevels_respa-1,0);
((Respa *) update->integrate)->copy_f_flevel(nlevels_respa-1);
}
}
/* ---------------------------------------------------------------------- */
void FixWallGran::post_force(int vflag)
{
int i,j;
double dx,dy,dz,del1,del2,delxy,delr,rsq,rwall,meff;
double vwall[3];
// do not update shear history during setup
shearupdate = 1;
if (update->setupflag) shearupdate = 0;
// if just reneighbored:
// update rigid body masses for owned atoms if using FixRigid
// body[i] = which body atom I is in, -1 if none
// mass_body = mass of each rigid body
if (neighbor->ago == 0 && fix_rigid) {
int tmp;
int *body = (int *) fix_rigid->extract("body",tmp);
double *mass_body = (double *) fix_rigid->extract("masstotal",tmp);
if (atom->nmax > nmax) {
memory->destroy(mass_rigid);
nmax = atom->nmax;
memory->create(mass_rigid,nmax,"wall/gran:mass_rigid");
}
int nlocal = atom->nlocal;
for (i = 0; i < nlocal; i++) {
if (body[i] >= 0) mass_rigid[i] = mass_body[body[i]];
else mass_rigid[i] = 0.0;
}
}
// set position of wall to initial settings and velocity to 0.0
// if wiggle or shear, set wall position and velocity accordingly
double wlo = lo;
double whi = hi;
vwall[0] = vwall[1] = vwall[2] = 0.0;
if (wiggle) {
double arg = omega * (update->ntimestep - time_origin) * dt;
if (wallstyle == axis) {
wlo = lo + amplitude - amplitude*cos(arg);
whi = hi + amplitude - amplitude*cos(arg);
}
vwall[axis] = amplitude*omega*sin(arg);
} else if (wshear) vwall[axis] = vshear;
// loop over all my atoms
// rsq = distance from wall
// dx,dy,dz = signed distance from wall
// for rotating cylinder, reset vwall based on particle position
// skip atom if not close enough to wall
// if wall was set to NULL, it's skipped since lo/hi are infinity
// compute force and torque on atom if close enough to wall
// via wall potential matched to pair potential
// set shear if pair potential stores history
double **x = atom->x;
double **v = atom->v;
double **f = atom->f;
double **omega = atom->omega;
double **torque = atom->torque;
double *radius = atom->radius;
double *rmass = atom->rmass;
int *mask = atom->mask;
int nlocal = atom->nlocal;
rwall = 0.0;
for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) {
dx = dy = dz = 0.0;
if (wallstyle == XPLANE) {
del1 = x[i][0] - wlo;
del2 = whi - x[i][0];
if (del1 < del2) dx = del1;
else dx = -del2;
} else if (wallstyle == YPLANE) {
del1 = x[i][1] - wlo;
del2 = whi - x[i][1];
if (del1 < del2) dy = del1;
else dy = -del2;
} else if (wallstyle == ZPLANE) {
del1 = x[i][2] - wlo;
del2 = whi - x[i][2];
if (del1 < del2) dz = del1;
else dz = -del2;
} else if (wallstyle == ZCYLINDER) {
delxy = sqrt(x[i][0]*x[i][0] + x[i][1]*x[i][1]);
delr = cylradius - delxy;
if (delr > radius[i]) {
dz = cylradius;
rwall = 0.0;
} else {
dx = -delr/delxy * x[i][0];
dy = -delr/delxy * x[i][1];
// rwall = -2r_c if inside cylinder, 2r_c outside
rwall = (delxy < cylradius) ? -2*cylradius : 2*cylradius;
if (wshear && axis != 2) {
vwall[0] += vshear * x[i][1]/delxy;
vwall[1] += -vshear * x[i][0]/delxy;
vwall[2] = 0.0;
}
}
}
rsq = dx*dx + dy*dy + dz*dz;
if (rsq > radius[i]*radius[i]) {
if (history)
for (j = 0; j < sheardim; j++)
shearone[i][j] = 0.0;
} else {
// meff = effective mass of sphere
// if I is part of rigid body, use body mass
meff = rmass[i];
if (fix_rigid && mass_rigid[i] > 0.0) meff = mass_rigid[i];
// invoke sphere/wall interaction
if (pairstyle == HOOKE)
hooke(rsq,dx,dy,dz,vwall,v[i],f[i],
omega[i],torque[i],radius[i],meff);
else if (pairstyle == HOOKE_HISTORY)
hooke_history(rsq,dx,dy,dz,vwall,v[i],f[i],
omega[i],torque[i],radius[i],meff,shearone[i]);
else if (pairstyle == HERTZ_HISTORY)
hertz_history(rsq,dx,dy,dz,vwall,rwall,v[i],f[i],
omega[i],torque[i],radius[i],meff,shearone[i]);
else if (pairstyle == BONDED_HISTORY)
bonded_history(rsq,dx,dy,dz,vwall,rwall,v[i],f[i],
omega[i],torque[i],radius[i],meff,shearone[i]);
}
}
}
}
/* ---------------------------------------------------------------------- */
void FixWallGran::post_force_respa(int vflag, int ilevel, int iloop)
{
if (ilevel == nlevels_respa-1) post_force(vflag);
}
/* ---------------------------------------------------------------------- */
void FixWallGran::hooke(double rsq, double dx, double dy, double dz,
double *vwall, double *v,
double *f, double *omega, double *torque,
double radius, double meff)
{
double r,vr1,vr2,vr3,vnnr,vn1,vn2,vn3,vt1,vt2,vt3;
double wr1,wr2,wr3,damp,ccel,vtr1,vtr2,vtr3,vrel;
double fn,fs,ft,fs1,fs2,fs3,fx,fy,fz,tor1,tor2,tor3,rinv,rsqinv;
r = sqrt(rsq);
rinv = 1.0/r;
rsqinv = 1.0/rsq;
// relative translational velocity
vr1 = v[0] - vwall[0];
vr2 = v[1] - vwall[1];
vr3 = v[2] - vwall[2];
// normal component
vnnr = vr1*dx + vr2*dy + vr3*dz;
vn1 = dx*vnnr * rsqinv;
vn2 = dy*vnnr * rsqinv;
vn3 = dz*vnnr * rsqinv;
// tangential component
vt1 = vr1 - vn1;
vt2 = vr2 - vn2;
vt3 = vr3 - vn3;
// relative rotational velocity
wr1 = radius*omega[0] * rinv;
wr2 = radius*omega[1] * rinv;
wr3 = radius*omega[2] * rinv;
// normal forces = Hookian contact + normal velocity damping
damp = meff*gamman*vnnr*rsqinv;
ccel = kn*(radius-r)*rinv - damp;
// relative velocities
vtr1 = vt1 - (dz*wr2-dy*wr3);
vtr2 = vt2 - (dx*wr3-dz*wr1);
vtr3 = vt3 - (dy*wr1-dx*wr2);
vrel = vtr1*vtr1 + vtr2*vtr2 + vtr3*vtr3;
vrel = sqrt(vrel);
// force normalization
fn = xmu * fabs(ccel*r);
fs = meff*gammat*vrel;
if (vrel != 0.0) ft = MIN(fn,fs) / vrel;
else ft = 0.0;
// tangential force due to tangential velocity damping
fs1 = -ft*vtr1;
fs2 = -ft*vtr2;
fs3 = -ft*vtr3;
// forces & torques
fx = dx*ccel + fs1;
fy = dy*ccel + fs2;
fz = dz*ccel + fs3;
f[0] += fx;
f[1] += fy;
f[2] += fz;
tor1 = rinv * (dy*fs3 - dz*fs2);
tor2 = rinv * (dz*fs1 - dx*fs3);
tor3 = rinv * (dx*fs2 - dy*fs1);
torque[0] -= radius*tor1;
torque[1] -= radius*tor2;
torque[2] -= radius*tor3;
}
/* ---------------------------------------------------------------------- */
void FixWallGran::hooke_history(double rsq, double dx, double dy, double dz,
double *vwall, double *v,
double *f, double *omega, double *torque,
double radius, double meff, double *shear)
{
double r,vr1,vr2,vr3,vnnr,vn1,vn2,vn3,vt1,vt2,vt3;
double wr1,wr2,wr3,damp,ccel,vtr1,vtr2,vtr3,vrel;
double fn,fs,fs1,fs2,fs3,fx,fy,fz,tor1,tor2,tor3;
double shrmag,rsht,rinv,rsqinv;
r = sqrt(rsq);
rinv = 1.0/r;
rsqinv = 1.0/rsq;
// relative translational velocity
vr1 = v[0] - vwall[0];
vr2 = v[1] - vwall[1];
vr3 = v[2] - vwall[2];
// normal component
vnnr = vr1*dx + vr2*dy + vr3*dz;
vn1 = dx*vnnr * rsqinv;
vn2 = dy*vnnr * rsqinv;
vn3 = dz*vnnr * rsqinv;
// tangential component
vt1 = vr1 - vn1;
vt2 = vr2 - vn2;
vt3 = vr3 - vn3;
// relative rotational velocity
wr1 = radius*omega[0] * rinv;
wr2 = radius*omega[1] * rinv;
wr3 = radius*omega[2] * rinv;
// normal forces = Hookian contact + normal velocity damping
damp = meff*gamman*vnnr*rsqinv;
ccel = kn*(radius-r)*rinv - damp;
// relative velocities
vtr1 = vt1 - (dz*wr2-dy*wr3);
vtr2 = vt2 - (dx*wr3-dz*wr1);
vtr3 = vt3 - (dy*wr1-dx*wr2);
vrel = vtr1*vtr1 + vtr2*vtr2 + vtr3*vtr3;
vrel = sqrt(vrel);
// shear history effects
if (shearupdate) {
shear[0] += vtr1*dt;
shear[1] += vtr2*dt;
shear[2] += vtr3*dt;
}
shrmag = sqrt(shear[0]*shear[0] + shear[1]*shear[1] + shear[2]*shear[2]);
// rotate shear displacements
rsht = shear[0]*dx + shear[1]*dy + shear[2]*dz;
rsht = rsht*rsqinv;
if (shearupdate) {
shear[0] -= rsht*dx;
shear[1] -= rsht*dy;
shear[2] -= rsht*dz;
}
// tangential forces = shear + tangential velocity damping
fs1 = - (kt*shear[0] + meff*gammat*vtr1);
fs2 = - (kt*shear[1] + meff*gammat*vtr2);
fs3 = - (kt*shear[2] + meff*gammat*vtr3);
// rescale frictional displacements and forces if needed
fs = sqrt(fs1*fs1 + fs2*fs2 + fs3*fs3);
fn = xmu * fabs(ccel*r);
if (fs > fn) {
if (shrmag != 0.0) {
shear[0] = (fn/fs) * (shear[0] + meff*gammat*vtr1/kt) -
meff*gammat*vtr1/kt;
shear[1] = (fn/fs) * (shear[1] + meff*gammat*vtr2/kt) -
meff*gammat*vtr2/kt;
shear[2] = (fn/fs) * (shear[2] + meff*gammat*vtr3/kt) -
meff*gammat*vtr3/kt;
fs1 *= fn/fs ;
fs2 *= fn/fs;
fs3 *= fn/fs;
} else fs1 = fs2 = fs3 = 0.0;
}
// forces & torques
fx = dx*ccel + fs1;
fy = dy*ccel + fs2;
fz = dz*ccel + fs3;
f[0] += fx;
f[1] += fy;
f[2] += fz;
tor1 = rinv * (dy*fs3 - dz*fs2);
tor2 = rinv * (dz*fs1 - dx*fs3);
tor3 = rinv * (dx*fs2 - dy*fs1);
torque[0] -= radius*tor1;
torque[1] -= radius*tor2;
torque[2] -= radius*tor3;
}
/* ---------------------------------------------------------------------- */
void FixWallGran::hertz_history(double rsq, double dx, double dy, double dz,
double *vwall, double rwall, double *v,
double *f, double *omega, double *torque,
double radius, double meff, double *shear)
{
double r,vr1,vr2,vr3,vnnr,vn1,vn2,vn3,vt1,vt2,vt3;
double wr1,wr2,wr3,damp,ccel,vtr1,vtr2,vtr3,vrel;
double fn,fs,fs1,fs2,fs3,fx,fy,fz,tor1,tor2,tor3;
double shrmag,rsht,polyhertz,rinv,rsqinv;
r = sqrt(rsq);
rinv = 1.0/r;
rsqinv = 1.0/rsq;
// relative translational velocity
vr1 = v[0] - vwall[0];
vr2 = v[1] - vwall[1];
vr3 = v[2] - vwall[2];
// normal component
vnnr = vr1*dx + vr2*dy + vr3*dz;
vn1 = dx*vnnr / rsq;
vn2 = dy*vnnr / rsq;
vn3 = dz*vnnr / rsq;
// tangential component
vt1 = vr1 - vn1;
vt2 = vr2 - vn2;
vt3 = vr3 - vn3;
// relative rotational velocity
wr1 = radius*omega[0] * rinv;
wr2 = radius*omega[1] * rinv;
wr3 = radius*omega[2] * rinv;
// normal forces = Hertzian contact + normal velocity damping
// rwall = 0 is flat wall case
// rwall positive or negative is curved wall
// will break (as it should) if rwall is negative and
// its absolute value < radius of particle
damp = meff*gamman*vnnr*rsqinv;
ccel = kn*(radius-r)*rinv - damp;
if (rwall == 0.0) polyhertz = sqrt((radius-r)*radius);
else polyhertz = sqrt((radius-r)*radius*rwall/(rwall+radius));
ccel *= polyhertz;
// relative velocities
vtr1 = vt1 - (dz*wr2-dy*wr3);
vtr2 = vt2 - (dx*wr3-dz*wr1);
vtr3 = vt3 - (dy*wr1-dx*wr2);
vrel = vtr1*vtr1 + vtr2*vtr2 + vtr3*vtr3;
vrel = sqrt(vrel);
// shear history effects
if (shearupdate) {
shear[0] += vtr1*dt;
shear[1] += vtr2*dt;
shear[2] += vtr3*dt;
}
shrmag = sqrt(shear[0]*shear[0] + shear[1]*shear[1] + shear[2]*shear[2]);
// rotate shear displacements
rsht = shear[0]*dx + shear[1]*dy + shear[2]*dz;
rsht = rsht*rsqinv;
if (shearupdate) {
shear[0] -= rsht*dx;
shear[1] -= rsht*dy;
shear[2] -= rsht*dz;
}
// tangential forces = shear + tangential velocity damping
fs1 = -polyhertz * (kt*shear[0] + meff*gammat*vtr1);
fs2 = -polyhertz * (kt*shear[1] + meff*gammat*vtr2);
fs3 = -polyhertz * (kt*shear[2] + meff*gammat*vtr3);
// rescale frictional displacements and forces if needed
fs = sqrt(fs1*fs1 + fs2*fs2 + fs3*fs3);
fn = xmu * fabs(ccel*r);
if (fs > fn) {
if (shrmag != 0.0) {
shear[0] = (fn/fs) * (shear[0] + meff*gammat*vtr1/kt) -
meff*gammat*vtr1/kt;
shear[1] = (fn/fs) * (shear[1] + meff*gammat*vtr2/kt) -
meff*gammat*vtr2/kt;
shear[2] = (fn/fs) * (shear[2] + meff*gammat*vtr3/kt) -
meff*gammat*vtr3/kt;
fs1 *= fn/fs ;
fs2 *= fn/fs;
fs3 *= fn/fs;
} else fs1 = fs2 = fs3 = 0.0;
}
// forces & torques
fx = dx*ccel + fs1;
fy = dy*ccel + fs2;
fz = dz*ccel + fs3;
f[0] += fx;
f[1] += fy;
f[2] += fz;
tor1 = rinv * (dy*fs3 - dz*fs2);
tor2 = rinv * (dz*fs1 - dx*fs3);
tor3 = rinv * (dx*fs2 - dy*fs1);
torque[0] -= radius*tor1;
torque[1] -= radius*tor2;
torque[2] -= radius*tor3;
}
/* ---------------------------------------------------------------------- */
void FixWallGran::bonded_history(double rsq, double dx, double dy, double dz,
double *vwall, double rwall, double *v,
double *f, double *omega, double *torque,
double radius, double meff, double *shear)
{
double r,vr1,vr2,vr3,vnnr,vn1,vn2,vn3,vt1,vt2,vt3;
double wr1,wr2,wr3,damp,ccel,vtr1,vtr2,vtr3,vrel;
double fn,fs,fs1,fs2,fs3,fx,fy,fz,tor1,tor2,tor3;
double shrmag,rsht,polyhertz,rinv,rsqinv;
double pois,E_eff,G_eff,rad_eff;
double a0,Fcrit,delcrit,delcritinv;
double overlap,olapsq,olapcubed,sqrtterm,tmp,keyterm,keyterm2,keyterm3;
double aovera0,foverFc;
double gammatsuji;
double ktwist,kroll,twistcrit,rollcrit;
double relrot1,relrot2,relrot3,vrl1,vrl2,vrl3,vrlmag,vrlmaginv;
double magtwist,magtortwist;
double magrollsq,magroll,magrollinv,magtorroll;
r = sqrt(rsq);
rinv = 1.0/r;
rsqinv = 1.0/rsq;
// relative translational velocity
vr1 = v[0] - vwall[0];
vr2 = v[1] - vwall[1];
vr3 = v[2] - vwall[2];
// normal component
vnnr = vr1*dx + vr2*dy + vr3*dz;
vn1 = dx*vnnr / rsq;
vn2 = dy*vnnr / rsq;
vn3 = dz*vnnr / rsq;
// tangential component
vt1 = vr1 - vn1;
vt2 = vr2 - vn2;
vt3 = vr3 - vn3;
// relative rotational velocity
wr1 = radius*omega[0] * rinv;
wr2 = radius*omega[1] * rinv;
wr3 = radius*omega[2] * rinv;
// normal forces = Hertzian contact + normal velocity damping
// material properties: currently assumes identical materials
pois = E/(2.0*G) - 1.0;
E_eff=0.5*E/(1.0-pois*pois);
G_eff=G/(4.0-2.0*pois);
// rwall = 0 is infinite wall radius of curvature (flat wall)
if (rwall == 0) rad_eff = radius;
else rad_eff = radius*rwall/(radius+rwall);
Fcrit = rad_eff * (3.0 * M_PI * SurfEnergy);
a0=pow(9.0*M_PI*SurfEnergy*rad_eff*rad_eff/E_eff,1.0/3.0);
delcrit = 1.0/rad_eff*(0.5 * a0*a0/pow(6.0,1.0/3.0));
delcritinv = 1.0/delcrit;
overlap = (radius-r) * delcritinv;
olapsq = overlap*overlap;
olapcubed = olapsq*overlap;
sqrtterm = sqrt(1.0 + olapcubed);
tmp = 2.0 + olapcubed + 2.0*sqrtterm;
keyterm = pow(tmp,THIRD);
keyterm2 = olapsq/keyterm;
keyterm3 = sqrt(overlap + keyterm2 + keyterm);
aovera0 = pow(6.0,-TWOTHIRDS) * (keyterm3 +
sqrt(2.0*overlap - keyterm2 - keyterm + 4.0/keyterm3));
foverFc = 4.0*((aovera0*aovera0*aovera0) - pow(aovera0,1.5));
ccel = Fcrit*foverFc*rinv;
// damp = meff*gamman*vnnr*rsqinv;
// ccel = kn*(radius-r)*rinv - damp;
// polyhertz = sqrt((radius-r)*radius);
// ccel *= polyhertz;
// use Tsuji et al form
polyhertz = 1.2728- 4.2783*0.9 + 11.087*0.9*0.9 - 22.348*0.9*0.9*0.9 +
27.467*0.9*0.9*0.9*0.9 - 18.022*0.9*0.9*0.9*0.9*0.9 +
4.8218*0.9*0.9*0.9*0.9*0.9*0.9;
gammatsuji = 0.2*sqrt(meff*kn);
damp = gammatsuji*vnnr/rsq;
ccel = ccel - polyhertz * damp;
// relative velocities
vtr1 = vt1 - (dz*wr2-dy*wr3);
vtr2 = vt2 - (dx*wr3-dz*wr1);
vtr3 = vt3 - (dy*wr1-dx*wr2);
vrel = vtr1*vtr1 + vtr2*vtr2 + vtr3*vtr3;
vrel = sqrt(vrel);
// shear history effects
if (shearupdate) {
shear[0] += vtr1*dt;
shear[1] += vtr2*dt;
shear[2] += vtr3*dt;
}
shrmag = sqrt(shear[0]*shear[0] + shear[1]*shear[1] + shear[2]*shear[2]);
// rotate shear displacements
rsht = shear[0]*dx + shear[1]*dy + shear[2]*dz;
rsht = rsht*rsqinv;
if (shearupdate) {
shear[0] -= rsht*dx;
shear[1] -= rsht*dy;
shear[2] -= rsht*dz;
}
// tangential forces = shear + tangential velocity damping
fs1 = -polyhertz * (kt*shear[0] + meff*gammat*vtr1);
fs2 = -polyhertz * (kt*shear[1] + meff*gammat*vtr2);
fs3 = -polyhertz * (kt*shear[2] + meff*gammat*vtr3);
kt=8.0*G_eff*a0*aovera0;
// shear damping uses Tsuji et al form also
fs1 = -kt*shear[0] - polyhertz*gammatsuji*vtr1;
fs2 = -kt*shear[1] - polyhertz*gammatsuji*vtr2;
fs3 = -kt*shear[2] - polyhertz*gammatsuji*vtr3;
// rescale frictional displacements and forces if needed
fs = sqrt(fs1*fs1 + fs2*fs2 + fs3*fs3);
fn = xmu * fabs(ccel*r + 2.0*Fcrit);
if (fs > fn) {
if (shrmag != 0.0) {
shear[0] = (fn/fs) * (shear[0] + polyhertz*gammatsuji*vtr1/kt) -
polyhertz*gammatsuji*vtr1/kt;
shear[1] = (fn/fs) * (shear[1] + polyhertz*gammatsuji*vtr2/kt) -
polyhertz*gammatsuji*vtr2/kt;
shear[2] = (fn/fs) * (shear[2] + polyhertz*gammatsuji*vtr3/kt) -
polyhertz*gammatsuji*vtr3/kt;
fs1 *= fn/fs ;
fs2 *= fn/fs;
fs3 *= fn/fs;
} else fs1 = fs2 = fs3 = 0.0;
}
// calculate twisting and rolling components of torque
// NOTE: this assumes spheres!
relrot1 = omega[0];
relrot2 = omega[1];
relrot3 = omega[2];
// rolling velocity
// NOTE: this assumes mondisperse spheres!
vrl1 = -rad_eff*rinv * (relrot2*dz - relrot3*dy);
vrl2 = -rad_eff*rinv * (relrot3*dx - relrot1*dz);
vrl3 = -rad_eff*rinv * (relrot1*dy - relrot2*dx);
vrlmag = sqrt(vrl1*vrl1+vrl2*vrl2+vrl3*vrl3);
if (vrlmag != 0.0) vrlmaginv = 1.0/vrlmag;
else vrlmaginv = 0.0;
// bond history effects
shear[3] += vrl1*dt;
shear[4] += vrl2*dt;
shear[5] += vrl3*dt;
// rotate bonded displacements correctly
double rlt = shear[3]*dx + shear[4]*dy + shear[5]*dz;
rlt /= rsq;
shear[3] -= rlt*dx;
shear[4] -= rlt*dy;
shear[5] -= rlt*dz;
// twisting torque
magtwist = rinv*(relrot1*dx + relrot2*dy + relrot3*dz);
shear[6] += magtwist*dt;
ktwist = 0.5*kt*(a0*aovera0)*(a0*aovera0);
magtortwist = -ktwist*shear[6] -
0.5*polyhertz*gammatsuji*(a0*aovera0)*(a0*aovera0)*magtwist;
twistcrit=TWOTHIRDS*a0*aovera0*Fcrit;
if (fabs(magtortwist) > twistcrit)
magtortwist = -twistcrit * magtwist/fabs(magtwist);
// rolling torque
magrollsq = shear[3]*shear[3] + shear[4]*shear[4] + shear[5]*shear[5];
magroll = sqrt(magrollsq);
if (magroll != 0.0) magrollinv = 1.0/magroll;
else magrollinv = 0.0;
kroll = 1.0*4.0*Fcrit*pow(aovera0,1.5);
magtorroll = -kroll*magroll - 0.1*gammat*vrlmag;
rollcrit = 0.01;
if (magroll > rollcrit) magtorroll = -kroll*rollcrit;
// forces & torques
fx = dx*ccel + fs1;
fy = dy*ccel + fs2;
fz = dz*ccel + fs3;
f[0] += fx;
f[1] += fy;
f[2] += fz;
tor1 = rinv * (dy*fs3 - dz*fs2);
tor2 = rinv * (dz*fs1 - dx*fs3);
tor3 = rinv * (dx*fs2 - dy*fs1);
torque[0] -= radius*tor1;
torque[1] -= radius*tor2;
torque[2] -= radius*tor3;
torque[0] += magtortwist * dx*rinv;
torque[1] += magtortwist * dy*rinv;
torque[2] += magtortwist * dz*rinv;
torque[0] += magtorroll * (shear[4]*dz - shear[5]*dy)*rinv*magrollinv;
torque[1] += magtorroll * (shear[5]*dx - shear[3]*dz)*rinv*magrollinv;
torque[2] += magtorroll * (shear[3]*dy - shear[4]*dx)*rinv*magrollinv;
}
/* ----------------------------------------------------------------------
memory usage of local atom-based arrays
------------------------------------------------------------------------- */
double FixWallGran::memory_usage()
{
int nmax = atom->nmax;
double bytes = 0.0;
if (history) bytes += nmax*sheardim * sizeof(double); // shear history
if (fix_rigid) bytes += nmax * sizeof(int); // mass_rigid
return bytes;
}
/* ----------------------------------------------------------------------
allocate local atom-based arrays
------------------------------------------------------------------------- */
void FixWallGran::grow_arrays(int nmax)
{
if (history) memory->grow(shearone,nmax,sheardim,"fix_wall_gran:shearone");
}
/* ----------------------------------------------------------------------
copy values within local atom-based arrays
------------------------------------------------------------------------- */
void FixWallGran::copy_arrays(int i, int j, int delflag)
{
if (history)
for (int m = 0; m < sheardim; m++)
shearone[j][m] = shearone[i][m];
}
/* ----------------------------------------------------------------------
initialize one atom's array values, called when atom is created
------------------------------------------------------------------------- */
void FixWallGran::set_arrays(int i)
{
if (history)
for (int m = 0; m < sheardim; m++)
shearone[i][m] = 0;
}
/* ----------------------------------------------------------------------
pack values in local atom-based arrays for exchange with another proc
------------------------------------------------------------------------- */
int FixWallGran::pack_exchange(int i, double *buf)
{
if (!history) return 0;
int n = 0;
for (int m = 0; m < sheardim; m++)
buf[n++] = shearone[i][m];
return n;
}
/* ----------------------------------------------------------------------
unpack values into local atom-based arrays after exchange
------------------------------------------------------------------------- */
int FixWallGran::unpack_exchange(int nlocal, double *buf)
{
if (!history) return 0;
int n = 0;
for (int m = 0; m < sheardim; m++)
shearone[nlocal][m] = buf[n++];
return n;
}
/* ----------------------------------------------------------------------
pack values in local atom-based arrays for restart file
------------------------------------------------------------------------- */
int FixWallGran::pack_restart(int i, double *buf)
{
if (!history) return 0;
int n = 0;
buf[n++] = sheardim + 1;
for (int m = 0; m < sheardim; m++)
buf[n++] = shearone[i][m];
return n;
}
/* ----------------------------------------------------------------------
unpack values from atom->extra array to restart the fix
------------------------------------------------------------------------- */
void FixWallGran::unpack_restart(int nlocal, int nth)
{
if (!history) return;
double **extra = atom->extra;
// skip to Nth set of extra values
int m = 0;
for (int i = 0; i < nth; i++) m += static_cast<int> (extra[nlocal][m]);
m++;
for (int i = 0; i < sheardim; i++)
shearone[nlocal][i] = extra[nlocal][m++];
}
/* ----------------------------------------------------------------------
maxsize of any atom's restart data
------------------------------------------------------------------------- */
int FixWallGran::maxsize_restart()
{
if (!history) return 0;
return 1 + sheardim;
}
/* ----------------------------------------------------------------------
size of atom nlocal's restart data
------------------------------------------------------------------------- */
int FixWallGran::size_restart(int nlocal)
{
if (!history) return 0;
return 1 + sheardim;
}
/* ---------------------------------------------------------------------- */
void FixWallGran::reset_dt()
{
dt = update->dt;
}
Event Timeline
Log In to Comment