Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91088434
pair_gran_no_history.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Nov 7, 18:54
Size
4 KB
Mime Type
text/x-c
Expires
Sat, Nov 9, 18:54 (2 d)
Engine
blob
Format
Raw Data
Handle
22194290
Attached To
rLAMMPS lammps
pair_gran_no_history.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing authors: Leo Silbert (SNL), Gary Grest (SNL)
------------------------------------------------------------------------- */
#include "math.h"
#include "stdio.h"
#include "string.h"
#include "pair_gran_no_history.h"
#include "atom.h"
#include "force.h"
#include "neigh_list.h"
using namespace LAMMPS_NS;
#define MIN(a,b) ((a) < (b) ? (a) : (b))
#define MAX(a,b) ((a) > (b) ? (a) : (b))
/* ---------------------------------------------------------------------- */
PairGranNoHistory::PairGranNoHistory(LAMMPS *lmp) : PairGranHistory(lmp)
{
history = 0;
}
/* ---------------------------------------------------------------------- */
void PairGranNoHistory::compute(int eflag, int vflag)
{
int i,j,ii,jj,inum,jnum;
double xtmp,ytmp,ztmp,delx,dely,delz;
double radi,radj,radsum,rsq,r,rinv;
double vr1,vr2,vr3,vnnr,vn1,vn2,vn3,vt1,vt2,vt3;
double wr1,wr2,wr3;
double vtr1,vtr2,vtr3,vrel;
double xmeff,damp,ccel,ccelx,ccely,ccelz,tor1,tor2,tor3;
double fn,fs,ft,fs1,fs2,fs3;
int *ilist,*jlist,*numneigh,**firstneigh;
double **f = atom->f;
double **x = atom->x;
double **v = atom->v;
double **omega = atom->omega;
double **torque = atom->torque;
double *radius = atom->radius;
double *rmass = atom->rmass;
int *mask = atom->mask;
int nlocal = atom->nlocal;
int newton_pair = force->newton_pair;
inum = list->inum;
ilist = list->ilist;
numneigh = list->numneigh;
firstneigh = list->firstneigh;
// loop over neighbors of my atoms
for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
xtmp = x[i][0];
ytmp = x[i][1];
ztmp = x[i][2];
radi = radius[i];
jlist = firstneigh[i];
jnum = numneigh[i];
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
delx = xtmp - x[j][0];
dely = ytmp - x[j][1];
delz = ztmp - x[j][2];
rsq = delx*delx + dely*dely + delz*delz;
radj = radius[j];
radsum = radi + radj;
if (rsq < radsum*radsum) {
r = sqrt(rsq);
// relative translational velocity
vr1 = v[i][0] - v[j][0];
vr2 = v[i][1] - v[j][1];
vr3 = v[i][2] - v[j][2];
vr1 *= dt;
vr2 *= dt;
vr3 *= dt;
// normal component
vnnr = vr1*delx + vr2*dely + vr3*delz;
vn1 = delx*vnnr / rsq;
vn2 = dely*vnnr / rsq;
vn3 = delz*vnnr / rsq;
// tangential component
vt1 = vr1 - vn1;
vt2 = vr2 - vn2;
vt3 = vr3 - vn3;
// relative rotational velocity
wr1 = radi*omega[i][0] + radj*omega[j][0];
wr2 = radi*omega[i][1] + radj*omega[j][1];
wr3 = radi*omega[i][2] + radj*omega[j][2];
wr1 *= dt/r;
wr2 *= dt/r;
wr3 *= dt/r;
// normal damping term
// this definition of DAMP includes the extra 1/r term
xmeff = rmass[i]*rmass[j] / (rmass[i]+rmass[j]);
if (mask[i] & freeze_group_bit) xmeff = rmass[j];
if (mask[j] & freeze_group_bit) xmeff = rmass[i];
damp = xmeff*gamman_dl*vnnr/rsq;
ccel = xkk*(radsum-r)/r - damp;
// relative velocities
vtr1 = vt1 - (delz*wr2-dely*wr3);
vtr2 = vt2 - (delx*wr3-delz*wr1);
vtr3 = vt3 - (dely*wr1-delx*wr2);
vrel = vtr1*vtr1 + vtr2*vtr2 + vtr3*vtr3;
vrel = sqrt(vrel);
// force normalization
fn = xmu * fabs(ccel*r);
fs = xmeff*gammas_dl*vrel;
if (vrel != 0.0) ft = MIN(fn,fs) / vrel;
else ft = 0.0;
// shear friction forces
fs1 = -ft*vtr1;
fs2 = -ft*vtr2;
fs3 = -ft*vtr3;
// forces & torques
ccelx = delx*ccel + fs1;
ccely = dely*ccel + fs2;
ccelz = delz*ccel + fs3;
f[i][0] += ccelx;
f[i][1] += ccely;
f[i][2] += ccelz;
rinv = 1/r;
tor1 = rinv * (dely*fs3 - delz*fs2);
tor2 = rinv * (delz*fs1 - delx*fs3);
tor3 = rinv * (delx*fs2 - dely*fs1);
torque[i][0] -= radi*tor1;
torque[i][1] -= radi*tor2;
torque[i][2] -= radi*tor3;
if (newton_pair || j < nlocal) {
f[j][0] -= ccelx;
f[j][1] -= ccely;
f[j][2] -= ccelz;
torque[j][0] -= radj*tor1;
torque[j][1] -= radj*tor2;
torque[j][2] -= radj*tor3;
}
}
}
}
}
Event Timeline
Log In to Comment